summaryrefslogtreecommitdiffstats
path: root/mm/slab.c
blob: 19dd69a11fe555de794617a47b35a03407295721 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * 11 April '97.  Started multi-threading - markhe
 *	The global cache-chain is protected by the semaphore 'cache_chain_sem'.
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *	This is a medium-term exclusion lock.
 *
 *	Each cache has its own lock; 'c_spinlock'.  This lock is needed only
 *	when accessing non-constant members of a cache-struct.
 *	Note: 'constant members' are assigned a value in kmem_cache_create() before
 *	the cache is linked into the cache-chain.  The values never change, so not
 *	even a multi-reader lock is needed for these members.
 *	The c_spinlock is only ever held for a few cycles.
 *
 *	To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
 *	maybe be sleeping and therefore not holding the semaphore/lock), the
 *	c_growing field is used.  This also prevents reaping from a cache.
 *
 *	Note, caches can _never_ be destroyed.  When a sub-system (eg module) has
 *	finished with a cache, it can only be shrunk.  This leaves the cache empty,
 *	but already enabled for re-use, eg. during a module re-load.
 *
 *	Notes:
 *		o Constructors/deconstructors are called while the cache-lock
 *		  is _not_ held.  Therefore they _must_ be threaded.
 *		o Constructors must not attempt to allocate memory from the
 *		  same cache that they are a constructor for - infinite loop!
 *		  (There is no easy way to trap this.)
 *		o The per-cache locks must be obtained with local-interrupts disabled.
 *		o When compiled with debug support, and an object-verify (upon release)
 *		  is request for a cache, the verify-function is called with the cache
 *		  lock held.  This helps debugging.
 *		o The functions called from try_to_free_page() must not attempt
 *		  to allocate memory from a cache which is being grown.
 *		  The buffer sub-system might try to allocate memory, via buffer_cachep.
 *		  As this pri is passed to the SLAB, and then (if necessary) onto the
 *		  gfp() funcs (which avoid calling try_to_free_page()), no deadlock
 *		  should happen.
 *
 *	The positioning of the per-cache lock is tricky.  If the lock is
 *	placed on the same h/w cache line as commonly accessed members
 *	the number of L1 cache-line faults is reduced.  However, this can
 *	lead to the cache-line ping-ponging between processors when the
 *	lock is in contention (and the common members are being accessed).
 *	Decided to keep it away from common members.
 *
 *	More fine-graining is possible, with per-slab locks...but this might be
 *	taking fine graining too far, but would have the advantage;
 *		During most allocs/frees no writes occur to the cache-struct.
 *		Therefore a multi-reader/one writer lock could be used (the writer
 *		needed when the slab chain is being link/unlinked).
 *		As we would not have an exclusion lock for the cache-structure, one
 *		would be needed per-slab (for updating s_free ptr, and/or the contents
 *		of s_index).
 *	The above locking would allow parallel operations to different slabs within
 *	the same cache with reduced spinning.
 *
 *	Per-engine slab caches, backed by a global cache (as in Mach's Zone allocator),
 *	would allow most allocations from the same cache to execute in parallel.
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
 *	It is not currently 100% safe to examine the page_struct outside of a kernel
 *	or global cli lock.  The risk is v. small, and non-fatal.
 *
 *	Calls to printk() are not 100% safe (the function is not threaded).  However,
 *	printk() is only used under an error condition, and the risk is v. small (not
 *	sure if the console write functions 'enjoy' executing multiple contextes in
 *	parallel.  I guess they don't...).
 *	Note, for most calls to printk() any held cache-lock is dropped.  This is not
 *	always done for text size reasons - having *_unlock() everywhere is bloat.
 */

/*
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 */

/*
 * This implementation deviates from Bonwick's paper as it
 * does not use a hash-table for large objects, but rather a per slab
 * index to hold the bufctls.  This allows the bufctl structure to
 * be small (one word), but limits the number of objects a slab (not
 * a cache) can contain when off-slab bufctls are used.  The limit is the
 * size of the largest general-cache that does not use off-slab bufctls,
 * divided by the size of a bufctl.  For 32bit archs, is this 256/4 = 64.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general-cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

#include	<linux/mm.h>
#include	<linux/slab.h>
#include	<linux/interrupt.h>
#include	<linux/config.h>
#include	<linux/init.h>
#include	<linux/smp.h>

#include	<asm/system.h>
#include	<asm/atomic.h>
#include	<asm/smp_lock.h>
#include	<asm/spinlock.h>

/* If there is a different PAGE_SIZE around, and it works with this allocator,
 * then change the following.
 */
#if	(PAGE_SIZE != 8192 && PAGE_SIZE != 4096)
#error	Your page size is probably not correctly supported - please check
#endif

/* SLAB_MGMT_CHECKS	- 1 to enable extra checks in kmem_cache_create().
 *			  0 if you wish to reduce memory usage.
 *
 * SLAB_DEBUG_SUPPORT	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_FREE,
 *			  SLAB_DEBUG_INITIAL, SLAB_RED_ZONE & SLAB_POISON.
 *			  0 for faster, smaller, code (espically in the critical paths).
 *
 * SLAB_STATS		- 1 to collect stats for /proc/slabinfo.
 *			  0 for faster, smaller, code (espically in the critical paths).
 *
 * SLAB_SELFTEST	- 1 to perform a few tests, mainly for developement.
 */
#define		SLAB_MGMT_CHECKS	1
#define		SLAB_DEBUG_SUPPORT	0
#define		SLAB_STATS		0
#define		SLAB_SELFTEST		0

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

/* Legal flag mask for kmem_cache_create(). */
#if	SLAB_DEBUG_SUPPORT
#if	0
#define	SLAB_C_MASK		(SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
				 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP| \
				 SLAB_HIGH_PACK)
#endif
#define	SLAB_C_MASK		(SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
				 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
#else
#if	0
#define	SLAB_C_MASK		(SLAB_HWCACHE_ALIGN|SLAB_NO_REAP|SLAB_HIGH_PACK)
#endif
#define	SLAB_C_MASK		(SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
#endif	/* SLAB_DEBUG_SUPPORT */

/* Slab management struct.
 * Manages the objs in a slab.  Placed either at the end of mem allocated
 * for a slab, or from an internal obj cache (cache_slabp).
 * Slabs are chained into a partially ordered list; fully used first, partial
 * next, and then fully free slabs.
 * The first 4 members are referenced during an alloc/free operation, and
 * should always appear on the same cache line.
 * Note: The offset between some members _must_ match offsets within
 * the kmem_cache_t - see kmem_cache_init() for the checks. */

#define	SLAB_OFFSET_BITS	16	/* could make this larger for 64bit archs */

typedef struct kmem_slab_s {
	struct kmem_bufctl_s	*s_freep;  /* ptr to first inactive obj in slab */
	struct kmem_bufctl_s	*s_index;
	unsigned long		 s_magic;
	unsigned long		 s_inuse;  /* num of objs active in slab */

	struct kmem_slab_s	*s_nextp;
	struct kmem_slab_s	*s_prevp;
	void			*s_mem;	   /* addr of first obj in slab */
	unsigned long		 s_offset:SLAB_OFFSET_BITS,
				 s_dma:1;
} kmem_slab_t;

/* When the slab mgmt is on-slab, this gives the size to use. */
#define	slab_align_size		(L1_CACHE_ALIGN(sizeof(kmem_slab_t)))

/* Test for end of slab chain. */
#define	kmem_slab_end(x)	((kmem_slab_t*)&((x)->c_offset))

/* s_magic */
#define	SLAB_MAGIC_ALLOC	0xA5C32F2BUL	/* slab is alive */
#define	SLAB_MAGIC_DESTROYED	0xB2F23C5AUL	/* slab has been destoryed */

/* Bufctl's are used for linking objs within a slab, identifying what slab an obj
 * is in, and the address of the associated obj (for sanity checking with off-slab
 * bufctls).  What a bufctl contains depends upon the state of the obj and
 * the organisation of the cache.
 */
typedef struct kmem_bufctl_s {
	union {
		struct kmem_bufctl_s	*buf_nextp;
		kmem_slab_t		*buf_slabp;	/* slab for obj */
		void *			 buf_objp;
	} u;
} kmem_bufctl_t;

/* ...shorthand... */
#define	buf_nextp	u.buf_nextp
#define	buf_slabp	u.buf_slabp
#define	buf_objp	u.buf_objp

#if	SLAB_DEBUG_SUPPORT
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	SLAB_RED_MAGIC1		0x5A2CF071UL	/* when obj is active */
#define	SLAB_RED_MAGIC2		0x170FC2A5UL	/* when obj is inactive */

/* ...and for poisoning */
#define	SLAB_POISON_BYTE	0x5a		/* byte value for poisoning */
#define	SLAB_POISON_END	0xa5		/* end-byte of poisoning */

#endif	/* SLAB_DEBUG_SUPPORT */

/* Cache struct - manages a cache.
 * First four members are commonly referenced during an alloc/free operation.
 */
struct kmem_cache_s {
	kmem_slab_t		 *c_freep;	/* first slab w. free objs */
	unsigned long	 	  c_flags;	/* constant flags */
	unsigned long		  c_offset;
	unsigned long		  c_num;	/* # of objs per slab */

	unsigned long		  c_magic;
	unsigned long		  c_inuse;	/* kept at zero */
	kmem_slab_t		 *c_firstp;	/* first slab in chain */
	kmem_slab_t		 *c_lastp;	/* last slab in chain */

	spinlock_t		  c_spinlock;
	unsigned long		  c_growing;
	unsigned long		  c_dflags;	/* dynamic flags */
	size_t 			  c_org_size;
	unsigned long		  c_gfporder;	/* order of pgs per slab (2^n) */
	void (*c_ctor)(void *, kmem_cache_t *, unsigned long); /* constructor func */
	void (*c_dtor)(void *, kmem_cache_t *, unsigned long); /* de-constructor func */
	unsigned long		  c_align;	/* alignment of objs */
	size_t			  c_colour;	/* cache colouring range */
	size_t			  c_colour_next;/* cache colouring */
	unsigned long		  c_failures;
	const char		 *c_name;
	struct kmem_cache_s	 *c_nextp;
	kmem_cache_t		 *c_index_cachep;
#if	SLAB_STATS
	unsigned long		  c_num_active;
	unsigned long		  c_num_allocations;
	unsigned long		  c_high_mark;
	unsigned long		  c_grown;
	unsigned long		  c_reaped;
	atomic_t 		  c_errors;
#endif	/* SLAB_STATS */
};

/* internal c_flags */
#define	SLAB_CFLGS_OFF_SLAB	0x010000UL	/* slab mgmt in own cache */
#define	SLAB_CFLGS_BUFCTL	0x020000UL	/* bufctls in own cache */
#define	SLAB_CFLGS_GENERAL	0x080000UL	/* a general-cache */

/* c_dflags (dynamic flags).  Need to hold the spinlock to access this member */
#define	SLAB_CFLGS_GROWN	0x000002UL	/* don't reap a recently grown */

#define	SLAB_OFF_SLAB(x)	((x) & SLAB_CFLGS_OFF_SLAB)
#define	SLAB_BUFCTL(x)		((x) & SLAB_CFLGS_BUFCTL)
#define	SLAB_GROWN(x)		((x) & SLAB_CFLGS_GROWN)

#if	SLAB_STATS
#define	SLAB_STATS_INC_ACTIVE(x)	((x)->c_num_active++)
#define	SLAB_STATS_DEC_ACTIVE(x)	((x)->c_num_active--)
#define	SLAB_STATS_INC_ALLOCED(x)	((x)->c_num_allocations++)
#define	SLAB_STATS_INC_GROWN(x)		((x)->c_grown++)
#define	SLAB_STATS_INC_REAPED(x)	((x)->c_reaped++)
#define	SLAB_STATS_SET_HIGH(x)		do { if ((x)->c_num_active > (x)->c_high_mark) \
						(x)->c_high_mark = (x)->c_num_active; \
					} while (0)
#define	SLAB_STATS_INC_ERR(x)		(atomic_inc(&(x)->c_errors))
#else
#define	SLAB_STATS_INC_ACTIVE(x)
#define	SLAB_STATS_DEC_ACTIVE(x)
#define	SLAB_STATS_INC_ALLOCED(x)
#define	SLAB_STATS_INC_GROWN(x)
#define	SLAB_STATS_INC_REAPED(x)
#define	SLAB_STATS_SET_HIGH(x)
#define	SLAB_STATS_INC_ERR(x)
#endif	/* SLAB_STATS */

#if	SLAB_SELFTEST
#if	!SLAB_DEBUG_SUPPORT
#error	Debug support needed for self-test
#endif
static void kmem_self_test(void);
#endif	/* SLAB_SELFTEST */

/* c_magic - used to detect 'out of slabs' in __kmem_cache_alloc() */
#define	SLAB_C_MAGIC		0x4F17A36DUL

/* maximum size of an obj (in 2^order pages) */
#define	SLAB_OBJ_MAX_ORDER	5	/* 32 pages */

/* maximum num of pages for a slab (prevents large requests to the VM layer) */
#define	SLAB_MAX_GFP_ORDER	5	/* 32 pages */

/* the 'prefered' minimum num of objs per slab - maybe less for large objs */
#define	SLAB_MIN_OBJS_PER_SLAB	4

/* If the num of objs per slab is <= SLAB_MIN_OBJS_PER_SLAB,
 * then the page order must be less than this before trying the next order.
 */
#define	SLAB_BREAK_GFP_ORDER	2

/* Macros for storing/retrieving the cachep and or slab from the
 * global 'mem_map'.  With off-slab bufctls, these are used to find the
 * slab an obj belongs to.  With kmalloc(), and kfree(), these are used
 * to find the cache which an obj belongs to.
 */
#define	SLAB_SET_PAGE_CACHE(pg, x)	((pg)->next = (struct page *)(x))
#define	SLAB_GET_PAGE_CACHE(pg)		((kmem_cache_t *)(pg)->next)
#define	SLAB_SET_PAGE_SLAB(pg, x)	((pg)->prev = (struct page *)(x))
#define	SLAB_GET_PAGE_SLAB(pg)		((kmem_slab_t *)(pg)->prev)

/* Size description struct for general-caches. */
typedef struct cache_sizes {
	size_t		 cs_size;
	kmem_cache_t	*cs_cachep;
} cache_sizes_t;

static cache_sizes_t cache_sizes[] = {
#if	PAGE_SIZE == 4096
	{  32,		NULL},
#endif
	{  64,		NULL},
	{ 128,		NULL},
	{ 256,		NULL},
	{ 512,		NULL},
	{1024,		NULL},
	{2048,		NULL},
	{4096,		NULL},
	{8192,		NULL},
	{16384,		NULL},
	{32768,		NULL},
	{65536,		NULL},
	{131072,	NULL},
	{0,		NULL}
};

/* Names for the general-caches.  Not placed into the sizes struct for
 * a good reason; the string ptr is not needed while searching in kmalloc(),
 * and would 'get-in-the-way' in the h/w cache.
 */
static char *cache_sizes_name[] = {
#if	PAGE_SIZE == 4096
	"size-32",
#endif
	"size-64",
	"size-128",
	"size-256",
	"size-512",
	"size-1024",
	"size-2048",
	"size-4096",
	"size-8192",
	"size-16384",
	"size-32768",
	"size-65536",
	"size-131072"
};

/* internal cache of cache description objs */
static	kmem_cache_t	cache_cache = {
/* freep, flags */		kmem_slab_end(&cache_cache), SLAB_NO_REAP,
/* offset, num */		sizeof(kmem_cache_t),	0,
/* c_magic, c_inuse */		SLAB_C_MAGIC, 0,
/* firstp, lastp */		kmem_slab_end(&cache_cache), kmem_slab_end(&cache_cache),
/* spinlock */			SPIN_LOCK_UNLOCKED,
/* growing */			0,
/* dflags */			0,
/* org_size, gfp */		0, 0,
/* ctor, dtor, align */		NULL, NULL, L1_CACHE_BYTES,
/* colour, colour_next */	0, 0,
/* failures */			0,
/* name */			"kmem_cache",
/* nextp */			&cache_cache,
/* index */			NULL,
};

/* Guard access to the cache-chain. */
static struct semaphore	cache_chain_sem;

/* Place maintainer for reaping. */
static	kmem_cache_t	*clock_searchp = &cache_cache;

/* Internal slab mgmt cache, for when slab mgmt is off-slab. */
static kmem_cache_t	*cache_slabp = NULL;

/* Max number of objs-per-slab for caches which use bufctl's.
 * Needed to avoid a possible looping condition in kmem_cache_grow().
 */
static unsigned long bufctl_limit = 0;

/* Initialisation - setup the `cache' cache. */
__initfunc(long kmem_cache_init(long start, long end))
{
	size_t size, i;

#define	kmem_slab_offset(x)  ((unsigned long)&((kmem_slab_t *)0)->x)
#define kmem_slab_diff(a,b)  (kmem_slab_offset(a) - kmem_slab_offset(b))
#define	kmem_cache_offset(x) ((unsigned long)&((kmem_cache_t *)0)->x)
#define kmem_cache_diff(a,b) (kmem_cache_offset(a) - kmem_cache_offset(b))

	/* Sanity checks... */
	if (kmem_cache_diff(c_firstp, c_magic) != kmem_slab_diff(s_nextp, s_magic) ||
	    kmem_cache_diff(c_firstp, c_inuse) != kmem_slab_diff(s_nextp, s_inuse) ||
	    ((kmem_cache_offset(c_lastp) -
	      ((unsigned long) kmem_slab_end((kmem_cache_t*)NULL))) !=
	     kmem_slab_offset(s_prevp)) ||
	    kmem_cache_diff(c_lastp, c_firstp) != kmem_slab_diff(s_prevp, s_nextp)) {
		/* Offsets to the magic are incorrect, either the structures have
		 * been incorrectly changed, or adjustments are needed for your
		 * architecture.
		 */
		panic("kmem_cache_init(): Offsets are wrong - I've been messed with!");
		/* NOTREACHED */
	}
#undef	kmem_cache_offset
#undef	kmem_cache_diff
#undef	kmem_slab_offset
#undef	kmem_slab_diff

	cache_chain_sem = MUTEX;

	size = cache_cache.c_offset + sizeof(kmem_bufctl_t);
	size += (L1_CACHE_BYTES-1);
	size &= ~(L1_CACHE_BYTES-1);
	cache_cache.c_offset = size-sizeof(kmem_bufctl_t);
	
	i = (PAGE_SIZE<<cache_cache.c_gfporder)-slab_align_size;
	cache_cache.c_num = i / size;	/* num of objs per slab */

	/* Cache colouring. */
	cache_cache.c_colour = (i-(cache_cache.c_num*size))/L1_CACHE_BYTES;
	cache_cache.c_colour_next = cache_cache.c_colour;

	return start;
}

/* Initialisation - setup remaining internal and general caches.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
__initfunc(void kmem_cache_sizes_init(void))
{
	unsigned int	found = 0;

	cache_slabp = kmem_cache_create("slab_cache", sizeof(kmem_slab_t),
					0, SLAB_HWCACHE_ALIGN, NULL, NULL);
	if (cache_slabp) {
		char **names = cache_sizes_name;
		cache_sizes_t *sizes = cache_sizes;
		do {
			/* For performance, all the general-caches are L1 aligned.
			 * This should be particularly beneficial on SMP boxes, as it
			 * elimantes "false sharing".
			 * Note for systems short on memory removing the alignment will
			 * allow tighter packing of the smaller caches. */
			if (!(sizes->cs_cachep =
			      kmem_cache_create(*names++, sizes->cs_size,
						0, SLAB_HWCACHE_ALIGN, NULL, NULL)))
				goto panic_time;
			if (!found) {
				/* Inc off-slab bufctl limit until the ceiling is hit. */
				if (SLAB_BUFCTL(sizes->cs_cachep->c_flags))
					found++;
				else
					bufctl_limit =
						(sizes->cs_size/sizeof(kmem_bufctl_t));
			}
			sizes->cs_cachep->c_flags |= SLAB_CFLGS_GENERAL;
			sizes++;
		} while (sizes->cs_size);
#if	SLAB_SELFTEST
		kmem_self_test();
#endif	/* SLAB_SELFTEST */
		return;
	}
panic_time:
	panic("kmem_cache_sizes_init: Error creating caches");
	/* NOTREACHED */
}

/* Interface to system's page allocator.  Dma pts to non-zero if all
 * of memory is DMAable. No need to hold the cache-lock.
 */
static inline void *
kmem_getpages(kmem_cache_t *cachep, unsigned long flags, unsigned int *dma)
{
	void	*addr;

	*dma = flags & SLAB_DMA;
	addr = (void*) __get_free_pages(flags & SLAB_LEVEL_MASK,
					cachep->c_gfporder, *dma); 
	/* Assume that now we have the pages no one else can legally
	 * messes with the 'struct page's.
	 * However vm_scan() might try to test the structure to see if
	 * it is a named-page or buffer-page.  The members it tests are
	 * of no interest here.....
	 */
	if (!*dma && addr) {
		/* Need to check if can dma. */
		struct page *page = mem_map + MAP_NR(addr);
		*dma = 1<<cachep->c_gfporder;
		while ((*dma)--) {
			if (!PageDMA(page)) {
				*dma = 0;
				break;
			}
			page++;
		}
	}
	return addr;
}

/* Interface to system's page release. */
static inline void
kmem_freepages(kmem_cache_t *cachep, void *addr)
{
	unsigned long i = (1<<cachep->c_gfporder);
	struct page *page = &mem_map[MAP_NR(addr)];

	/* free_pages() does not clear the type bit - we do that.
	 * The pages have been unlinked from their cache-slab,
	 * but their 'struct page's might be accessed in
	 * vm_scan(). Shouldn't be a worry.
	 */
	while (i--) {
		PageClearSlab(page);
		page++;
	}
	free_pages((unsigned long)addr, cachep->c_gfporder); 
}

#if	SLAB_DEBUG_SUPPORT
static inline void
kmem_poison_obj(kmem_cache_t *cachep, void *addr)
{
	memset(addr, SLAB_POISON_BYTE, cachep->c_org_size);
	*(unsigned char *)(addr+cachep->c_org_size-1) = SLAB_POISON_END;
}

static inline int
kmem_check_poison_obj(kmem_cache_t *cachep, void *addr)
{
	void *end;
	end = memchr(addr, SLAB_POISON_END, cachep->c_org_size);
	if (end != (addr+cachep->c_org_size-1))
		return 1;
	return 0;
}
#endif	/* SLAB_DEBUG_SUPPORT */

/* Three slab chain funcs - all called with ints disabled and the appropiate
 * cache-lock held.
 */
static inline void
kmem_slab_unlink(kmem_slab_t *slabp)
{
	kmem_slab_t	*prevp = slabp->s_prevp;
	kmem_slab_t	*nextp = slabp->s_nextp;
	prevp->s_nextp = nextp;
	nextp->s_prevp = prevp;
}

static inline void 
kmem_slab_link_end(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	kmem_slab_t	*lastp = cachep->c_lastp;
	slabp->s_nextp = kmem_slab_end(cachep);
	slabp->s_prevp = lastp;
	cachep->c_lastp = slabp;
	lastp->s_nextp = slabp;
}

static inline void
kmem_slab_link_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	kmem_slab_t	*nextp = cachep->c_freep;
	kmem_slab_t	*prevp = nextp->s_prevp;
	slabp->s_nextp = nextp;
	slabp->s_prevp = prevp;
	nextp->s_prevp = slabp;
	slabp->s_prevp->s_nextp = slabp;
}

/* Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
static void
kmem_slab_destroy(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	if (cachep->c_dtor
#if	SLAB_DEBUG_SUPPORT
		|| cachep->c_flags & (SLAB_POISON || SLAB_RED_ZONE)
#endif	/*SLAB_DEBUG_SUPPORT*/
	) {
		/* Doesn't use the bufctl ptrs to find objs. */
		unsigned long num = cachep->c_num;
		void *objp = slabp->s_mem;
		do {
#if	SLAB_DEBUG_SUPPORT
			if (cachep->c_flags & SLAB_RED_ZONE) {
				if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1)
					printk(KERN_ERR "kmem_slab_destroy: "
					       "Bad front redzone - %s\n",
					       cachep->c_name);
				objp += BYTES_PER_WORD;
				if (*((unsigned long*)(objp+cachep->c_org_size)) !=
				    SLAB_RED_MAGIC1)
					printk(KERN_ERR "kmem_slab_destroy: "
					       "Bad rear redzone - %s\n",
					       cachep->c_name);
			}
			if (cachep->c_dtor)
#endif	/*SLAB_DEBUG_SUPPORT*/
				(cachep->c_dtor)(objp, cachep, 0);
#if	SLAB_DEBUG_SUPPORT
			else if (cachep->c_flags & SLAB_POISON) {
				if (kmem_check_poison_obj(cachep, objp))
					printk(KERN_ERR "kmem_slab_destory: "
					       "Bad poison - %s\n", cachep->c_name);
			}
			if (cachep->c_flags & SLAB_RED_ZONE)
				objp -= BYTES_PER_WORD;
#endif	/* SLAB_DEBUG_SUPPORT */
			objp += cachep->c_offset;
			if (!slabp->s_index)
				objp += sizeof(kmem_bufctl_t);
		} while (--num);
	}

	slabp->s_magic = SLAB_MAGIC_DESTROYED;
	kmem_freepages(cachep, slabp->s_mem-slabp->s_offset);
	if (slabp->s_index)
		kmem_cache_free(cachep->c_index_cachep, slabp->s_index);
	if (SLAB_OFF_SLAB(cachep->c_flags))
		kmem_cache_free(cache_slabp, slabp);
}

/* Cal the num objs, wastage, and bytes left over for a given slab size. */
static inline size_t
kmem_cache_cal_waste(unsigned long gfporder, size_t size, size_t extra,
		     unsigned long flags, size_t *left_over, unsigned long *num)
{
	size_t wastage = PAGE_SIZE<<gfporder;

	if (SLAB_OFF_SLAB(flags))
		gfporder = 0;
	else
		gfporder = slab_align_size;
	wastage -= gfporder;
	*num = wastage / size;
	wastage -= (*num * size);
	*left_over = wastage;

	return (wastage + gfporder + (extra * *num));
}

/* Create a cache:
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * NOTE: The 'name' is assumed to be memory that is _not_  going to disappear.
 */
kmem_cache_t *
kmem_cache_create(const char *name, size_t size, size_t offset,
	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
	void (*dtor)(void*, kmem_cache_t *, unsigned long))
{
	const char *func_nm= KERN_ERR "kmem_create: ";
	kmem_cache_t	*searchp;
	kmem_cache_t	*cachep=NULL;
	size_t		extra;
	size_t		left_over;
	size_t		align;

	/* Sanity checks... */
#if	SLAB_MGMT_CHECKS
	if (!name) {
		printk("%sNULL ptr\n", func_nm);
		goto opps;
	}
	if (in_interrupt()) {
		printk("%sCalled during int - %s\n", func_nm, name);
		goto opps;
	}

	if (size < BYTES_PER_WORD) {
		printk("%sSize too small %d - %s\n", func_nm, (int) size, name);
		size = BYTES_PER_WORD;
	}

	if (size > ((1<<SLAB_OBJ_MAX_ORDER)*PAGE_SIZE)) {
		printk("%sSize too large %d - %s\n", func_nm, (int) size, name);
		goto opps;
	}

	if (dtor && !ctor) {
		/* Decon, but no con - doesn't make sense */
		printk("%sDecon but no con - %s\n", func_nm, name);
		goto opps;
	}

	if (offset < 0 || offset > size) {
		printk("%sOffset weired %d - %s\n", func_nm, (int) offset, name);
		offset = 0;
	}

#if	SLAB_DEBUG_SUPPORT
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk("%sNo con, but init state check requested - %s\n", func_nm, name);
		flags &= ~SLAB_DEBUG_INITIAL;
	}

	if ((flags & SLAB_POISON) && ctor) {
		/* request for poisoning, but we can't do that with a constructor */
		printk("%sPoisoning requested, but con given - %s\n", func_nm, name);
		flags &= ~SLAB_POISON;
	}
#if	0
	if ((flags & SLAB_HIGH_PACK) && ctor) {
		printk("%sHigh pack requested, but con given - %s\n", func_nm, name);
		flags &= ~SLAB_HIGH_PACK;
	}
	if ((flags & SLAB_HIGH_PACK) && (flags & (SLAB_POISON|SLAB_RED_ZONE))) {
		printk("%sHigh pack requested, but with poisoning/red-zoning - %s\n",
		       func_nm, name);
		flags &= ~SLAB_HIGH_PACK;
	}
#endif
#endif	/* SLAB_DEBUG_SUPPORT */
#endif	/* SLAB_MGMT_CHECKS */

	/* Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~SLAB_C_MASK) {
		printk("%sIllgl flg %lX - %s\n", func_nm, flags, name);
		flags &= SLAB_C_MASK;
	}

	/* Get cache's description obj. */
	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
	if (!cachep)
		goto opps;
	memset(cachep, 0, sizeof(kmem_cache_t));

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
	if (size & (BYTES_PER_WORD-1)) {
		size += (BYTES_PER_WORD-1);
		size &= ~(BYTES_PER_WORD-1);
		printk("%sForcing size word alignment - %s\n", func_nm, name);
	}

	cachep->c_org_size = size;
#if	SLAB_DEBUG_SUPPORT
	if (flags & SLAB_RED_ZONE) {
		/* There is no point trying to honour cache alignment when redzoning. */
		flags &= ~SLAB_HWCACHE_ALIGN;
		size += 2*BYTES_PER_WORD;		/* words for redzone */
	}
#endif	/* SLAB_DEBUG_SUPPORT */

	align = BYTES_PER_WORD;
	if (flags & SLAB_HWCACHE_ALIGN)
		align = L1_CACHE_BYTES;

	/* Determine if the slab mgmt and/or bufclts are 'on' or 'off' slab. */
	extra = sizeof(kmem_bufctl_t);
	if (size < (PAGE_SIZE>>3)) {
		/* Size is small(ish).  Use packing where bufctl size per
		 * obj is low, and slab mngmnt is on-slab.
		 */
#if	0
		if ((flags & SLAB_HIGH_PACK)) {
			/* Special high packing for small objects
			 * (mainly for vm_mapping structs, but
			 * others can use it).
			 */
			if (size == (L1_CACHE_BYTES/4) || size == (L1_CACHE_BYTES/2) ||
			    size == L1_CACHE_BYTES) {
				/* The bufctl is stored with the object. */
				extra = 0;
			} else
				flags &= ~SLAB_HIGH_PACK;
		}
#endif
	} else {
		/* Size is large, assume best to place the slab mngmnt obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= SLAB_CFLGS_OFF_SLAB;
		if (!(size & ~PAGE_MASK) || size == (PAGE_SIZE/2)
		    || size == (PAGE_SIZE/4) || size == (PAGE_SIZE/8)) {
			/* To avoid waste the bufctls are off-slab... */
			flags |= SLAB_CFLGS_BUFCTL;
			extra = 0;
		} /* else slab mngmnt is off-slab, but freelist ptrs are on. */
	}
	size += extra;

	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Need to adjust size so that objs are cache aligned. */
		if (size > (L1_CACHE_BYTES/2)) {
			size_t words = size % L1_CACHE_BYTES;
			if (words)
				size += (L1_CACHE_BYTES-words);
		} else {
			/* Small obj size, can get at least two per cache line. */
			int num_per_line = L1_CACHE_BYTES/size;
			left_over = L1_CACHE_BYTES - (num_per_line*size);
			if (left_over) {
				/* Need to adjust size so objs cache align. */
				if (left_over%num_per_line) {
					/* Odd num of objs per line - fixup. */
					num_per_line--;
					left_over += size;
				}
				size += (left_over/num_per_line);
			}
		}
	} else if (!(size%L1_CACHE_BYTES)) {
		/* Size happens to cache align... */
		flags |= SLAB_HWCACHE_ALIGN;
		align = L1_CACHE_BYTES;
	}

	/* Cal size (in pages) of slabs, and the num of objs per slab.
	 * This could be made much more intelligent.  For now, try to avoid
	 * using high page-orders for slabs.  When the gfp() funcs are more
	 * friendly towards high-order requests, this should be changed.
	 */
	do {
		size_t wastage;
		unsigned int break_flag = 0;
cal_wastage:
		wastage = kmem_cache_cal_waste(cachep->c_gfporder, size, extra,
					       flags, &left_over, &cachep->c_num);
		if (!cachep->c_num)
			goto next;
		if (break_flag)
			break;
		if (SLAB_BUFCTL(flags) && cachep->c_num > bufctl_limit) {
			/* Oops, this num of objs will cause problems. */
			cachep->c_gfporder--;
			break_flag++;
			goto cal_wastage;
		}
		if (cachep->c_gfporder == SLAB_MAX_GFP_ORDER)
			break;

		/* Large num of objs is good, but v. large slabs are currently
		 * bad for the gfp()s.
		 */
		if (cachep->c_num <= SLAB_MIN_OBJS_PER_SLAB) {
			if (cachep->c_gfporder < SLAB_BREAK_GFP_ORDER)
				goto next;
		}

		/* Stop caches with small objs having a large num of pages. */
		if (left_over <= slab_align_size)
			break;
		if ((wastage*8) <= (PAGE_SIZE<<cachep->c_gfporder))
			break;	/* Acceptable internal fragmentation. */
next:
		cachep->c_gfporder++;
	} while (1);

	/* If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab.  This is at the expense of any extra colouring.
	 */
	if ((flags & SLAB_CFLGS_OFF_SLAB) && !SLAB_BUFCTL(flags) &&
	    left_over >= slab_align_size) {
		flags &= ~SLAB_CFLGS_OFF_SLAB;
		left_over -= slab_align_size;
	}

	/* Offset must be a factor of the alignment. */
	offset += (align-1);
	offset &= ~(align-1);

	/* Mess around with the offset alignment. */
	if (!left_over) {
		offset = 0;
	} else if (left_over < offset) {
		offset = align;
		if (flags & SLAB_HWCACHE_ALIGN) {
			if (left_over < offset)
				offset = 0;
		} else {
			/* Offset is BYTES_PER_WORD, and left_over is at
			 * least BYTES_PER_WORD.
			 */
			if (left_over >= (BYTES_PER_WORD*2)) {
				offset >>= 1;
				if (left_over >= (BYTES_PER_WORD*4))
					offset >>= 1;
			}
		}
	} else if (!offset) {
		/* No offset requested, but space enough - give one. */
		offset = left_over/align;
		if (flags & SLAB_HWCACHE_ALIGN) {
			if (offset >= 8) {
				/* A large number of colours - use a larger alignment. */
				align <<= 1;
			}
		} else {
			if (offset >= 10) {
				align <<= 1;
				if (offset >= 16)
					align <<= 1;
			}
		}
		offset = align;
	}

#if	0
printk("%s: Left_over:%d Align:%d Size:%d\n", name, left_over, offset, size);
#endif

	if ((cachep->c_align = (unsigned long) offset))
		cachep->c_colour = (left_over/offset);
	cachep->c_colour_next = cachep->c_colour;

	/* If the bufctl's are on-slab, c_offset does not include the size of bufctl. */
	if (!SLAB_BUFCTL(flags))
		size -= sizeof(kmem_bufctl_t);
	else
		cachep->c_index_cachep =
			kmem_find_general_cachep(cachep->c_num*sizeof(kmem_bufctl_t));
	cachep->c_offset = (unsigned long) size;
	cachep->c_freep = kmem_slab_end(cachep);
	cachep->c_firstp = kmem_slab_end(cachep);
	cachep->c_lastp = kmem_slab_end(cachep);
	cachep->c_flags = flags;
	cachep->c_ctor = ctor;
	cachep->c_dtor = dtor;
	cachep->c_magic = SLAB_C_MAGIC;
	cachep->c_name = name;		/* Simply point to the name. */
	spin_lock_init(&cachep->c_spinlock);

	/* Need the semaphore to access the chain. */
	down(&cache_chain_sem);
	searchp = &cache_cache;
	do {
		/* The name field is constant - no lock needed. */
		if (!strcmp(searchp->c_name, name)) {
			printk("%sDup name - %s\n", func_nm, name);
			break;
		}
		searchp = searchp->c_nextp;
	} while (searchp != &cache_cache);

	/* There is no reason to lock our new cache before we
	 * link it in - no one knows about it yet...
	 */
	cachep->c_nextp = cache_cache.c_nextp;
	cache_cache.c_nextp = cachep;
	up(&cache_chain_sem);
opps:
	return cachep;
}

/* Shrink a cache.  Releases as many slabs as possible for a cache.
 * It is expected this function will be called by a module when it is
 * unloaded.  The cache is _not_ removed, this creates too many problems and
 * the cache-structure does not take up much room.  A module should keep its
 * cache pointer(s) in unloaded memory, so when reloaded it knows the cache
 * is available.  To help debugging, a zero exit status indicates all slabs
 * were released.
 */
int
kmem_cache_shrink(kmem_cache_t *cachep)
{
	kmem_cache_t	*searchp;
	kmem_slab_t	*slabp;
	int	ret;

	if (!cachep) {
		printk(KERN_ERR "kmem_shrink: NULL ptr\n");
		return 2;
	}
	if (in_interrupt()) {
		printk(KERN_ERR "kmem_shrink: Called during int - %s\n", cachep->c_name);
		return 2;
	}

	/* Find the cache in the chain of caches. */
	down(&cache_chain_sem);		/* Semaphore is needed. */
	searchp = &cache_cache;
	for (;searchp->c_nextp != &cache_cache; searchp = searchp->c_nextp) {
		if (searchp->c_nextp != cachep)
			continue;

		/* Accessing clock_searchp is safe - we hold the mutex. */
		if (cachep == clock_searchp)
			clock_searchp = cachep->c_nextp;
		goto found;
	}
	up(&cache_chain_sem);
	printk(KERN_ERR "kmem_shrink: Invalid cache addr %p\n", cachep);
	return 2;
found:
	/* Relase the sempahore before getting the cache-lock.  This could
	 * mean multiple engines are shrinking the cache, but so what...
	 */
	up(&cache_chain_sem);
	spin_lock_irq(&cachep->c_spinlock);

	/* If the cache is growing, stop shrinking. */
	while (!cachep->c_growing) {
		slabp = cachep->c_lastp;
		if (slabp->s_inuse || slabp == kmem_slab_end(cachep))
			break;
		kmem_slab_unlink(slabp);
		spin_unlock_irq(&cachep->c_spinlock);
		kmem_slab_destroy(cachep, slabp);
		spin_lock_irq(&cachep->c_spinlock);
	}
	ret = 1;
	if (cachep->c_lastp == kmem_slab_end(cachep))
		ret--;		/* Cache is empty. */
	spin_unlock_irq(&cachep->c_spinlock);
	return ret;
}

/* Get the mem for a slab mgmt obj. */
static inline kmem_slab_t *
kmem_cache_slabmgmt(kmem_cache_t *cachep, void *objp, int local_flags)
{
	kmem_slab_t	*slabp;

	if (SLAB_OFF_SLAB(cachep->c_flags)) {
		/* Slab mgmt obj is off-slab. */
		slabp = kmem_cache_alloc(cache_slabp, local_flags);
	} else {
		/* Slab mgmnt at end of slab mem, placed so that
		 * the position is 'coloured'.
		 */
		void *end;
		end = objp + (cachep->c_num * cachep->c_offset);
		if (!SLAB_BUFCTL(cachep->c_flags))
			end += (cachep->c_num * sizeof(kmem_bufctl_t));
		slabp = (kmem_slab_t *) L1_CACHE_ALIGN((unsigned long)end);
	}

	if (slabp) {
		slabp->s_inuse = 0;
		slabp->s_dma = 0;
		slabp->s_index = NULL;
	}

	return slabp;
}

static inline void
kmem_cache_init_objs(kmem_cache_t * cachep, kmem_slab_t * slabp, void *objp,
				unsigned long ctor_flags)
{
	kmem_bufctl_t	**bufpp = &slabp->s_freep;
	unsigned long	num = cachep->c_num-1;

	do {
#if	SLAB_DEBUG_SUPPORT
		if (cachep->c_flags & SLAB_RED_ZONE) {
			*((unsigned long*)(objp)) = SLAB_RED_MAGIC1;
			objp += BYTES_PER_WORD;
			*((unsigned long*)(objp+cachep->c_org_size)) = SLAB_RED_MAGIC1;
		}
#endif	/* SLAB_DEBUG_SUPPORT */

		/* Constructors are not allowed to allocate memory from the same cache
		 * which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
		 */
		if (cachep->c_ctor)
			cachep->c_ctor(objp, cachep, ctor_flags);
#if	SLAB_DEBUG_SUPPORT
		else if (cachep->c_flags & SLAB_POISON) {
			/* need to poison the objs */
			kmem_poison_obj(cachep, objp);
		}

		if (cachep->c_flags & SLAB_RED_ZONE) {
			if (*((unsigned long*)(objp+cachep->c_org_size)) !=
			    SLAB_RED_MAGIC1) {
				*((unsigned long*)(objp+cachep->c_org_size)) =
					SLAB_RED_MAGIC1;
				printk(KERN_ERR "kmem_init_obj: Bad rear redzone "
				       "after constructor - %s\n", cachep->c_name);
			}
			objp -= BYTES_PER_WORD;
			if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1) {
				*((unsigned long*)(objp)) = SLAB_RED_MAGIC1;
				printk(KERN_ERR "kmem_init_obj: Bad front redzone "
				       "after constructor - %s\n", cachep->c_name);
			}
		}
#endif	/* SLAB_DEBUG_SUPPORT */

		objp += cachep->c_offset;
		if (!slabp->s_index) {
			*bufpp = objp;
			objp += sizeof(kmem_bufctl_t);
		} else
			*bufpp = &slabp->s_index[num];
		bufpp = &(*bufpp)->buf_nextp;
	} while (num--);

	*bufpp = NULL;
}

/* Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
static int
kmem_cache_grow(kmem_cache_t * cachep, int flags)
{
	kmem_slab_t	*slabp;
	struct page	*page;
	void		*objp;
	size_t		 offset;
	unsigned int	 dma, local_flags;
	unsigned long	 ctor_flags;
	unsigned long	 save_flags;

	/* Be lazy and only check for valid flags here,
 	 * keeping it out of the critical path in kmem_cache_alloc().
	 */
	if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) {
		printk(KERN_WARNING "kmem_grow: Illegal flgs %X (correcting) - %s\n",
		       flags, cachep->c_name);
		flags &= (SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW);
	}

	if (flags & SLAB_NO_GROW)
		return 0;

	/* The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc().  If a caller is slightly mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC) {
		printk(KERN_ERR "kmem_grow: Called nonatomically from int - %s\n",
		       cachep->c_name);
		flags &= ~SLAB_LEVEL_MASK;
		flags |= SLAB_ATOMIC;
	}
	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (local_flags == SLAB_ATOMIC) {
		/* Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;
	}

	/* About to mess with non-constant members - lock. */
	spin_lock_irqsave(&cachep->c_spinlock, save_flags);

	/* Get colour for the slab, and cal the next value. */
	if (!(offset = cachep->c_colour_next--))
		cachep->c_colour_next = cachep->c_colour;
	offset *= cachep->c_align;
	cachep->c_dflags = SLAB_CFLGS_GROWN;

	cachep->c_growing++;
re_try:
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);

	/* A series of memory allocations for a new slab.
	 * Neither the cache-chain semaphore, or cache-lock, are
	 * held, but the incrementing c_growing prevents this
	 * this cache from being reaped or shrunk.
	 * Note: The cache could be selected in for reaping in
	 * kmem_cache_reap(), but when the final test is made the
	 * growing value will be seen.
	 */

	/* Get mem for the objs. */
	if (!(objp = kmem_getpages(cachep, flags, &dma)))
		goto failed;

	/* Get slab mgmt. */
	if (!(slabp = kmem_cache_slabmgmt(cachep, objp+offset, local_flags)))
		goto opps1;
	if (dma)
		slabp->s_dma = 1;
	if (SLAB_BUFCTL(cachep->c_flags)) {
		slabp->s_index = kmem_cache_alloc(cachep->c_index_cachep, local_flags);
		if (!slabp->s_index)
			goto opps2;
	}

	/* Nasty!!!!!!  I hope this is OK. */
	dma = 1 << cachep->c_gfporder;
	page = &mem_map[MAP_NR(objp)];
	do {
		SLAB_SET_PAGE_CACHE(page, cachep);
		SLAB_SET_PAGE_SLAB(page, slabp);
		PageSetSlab(page);
		page++;
	} while (--dma);

	slabp->s_offset = offset;	/* It will fit... */
	objp += offset;		/* Address of first object. */
	slabp->s_mem = objp;

	/* For on-slab bufctls, c_offset is the distance between the start of
	 * an obj and its related bufctl.  For off-slab bufctls, c_offset is
	 * the distance between objs in the slab.
	 */
	kmem_cache_init_objs(cachep, slabp, objp, ctor_flags);

	spin_lock_irq(&cachep->c_spinlock);

	/* Make slab active. */
	slabp->s_magic = SLAB_MAGIC_ALLOC;
	kmem_slab_link_end(cachep, slabp);
	if (cachep->c_freep == kmem_slab_end(cachep))
		cachep->c_freep = slabp;
	SLAB_STATS_INC_GROWN(cachep);
	cachep->c_failures = 0;
	cachep->c_growing--;

	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	return 1;
opps2:
	if (SLAB_OFF_SLAB(cachep->c_flags))
		kmem_cache_free(cache_slabp, slabp);
opps1:
	kmem_freepages(cachep, objp); 
failed:
	spin_lock_irq(&cachep->c_spinlock);
	if (local_flags != SLAB_ATOMIC && cachep->c_gfporder) {
		/* For large order (>0) slabs, we try again.
		 * Needed because the gfp() functions are not good at giving
		 * out contigious pages unless pushed (but do not push too hard).
		 */
		if (cachep->c_failures++ < 4 && cachep->c_freep == kmem_slab_end(cachep))
			goto re_try;
		cachep->c_failures = 1;	/* Memory is low, don't try as hard next time. */
	}
	cachep->c_growing--;
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	return 0;
}

static void
kmem_report_alloc_err(const char *str, kmem_cache_t * cachep)
{
	if (cachep)
		SLAB_STATS_INC_ERR(cachep);	/* this is atomic */
	printk(KERN_ERR "kmem_alloc: %s (name=%s)\n",
	       str, cachep ? cachep->c_name : "unknown");
}

static void
kmem_report_free_err(const char *str, const void *objp, kmem_cache_t * cachep)
{
	if (cachep)
		SLAB_STATS_INC_ERR(cachep);
	printk(KERN_ERR "kmem_free: %s (objp=%p, name=%s)\n",
	       str, objp, cachep ? cachep->c_name : "unknown");
}

/* Search for a slab whose objs are suitable for DMA.
 * Note: since testing the first free slab (in __kmem_cache_alloc()),
 * ints must not have been enabled, or the cache-lock released!
 */
static inline kmem_slab_t *
kmem_cache_search_dma(kmem_cache_t * cachep)
{
	kmem_slab_t	*slabp = cachep->c_freep->s_nextp;

	for (; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) {
		if (!(slabp->s_dma))
			continue;
		kmem_slab_unlink(slabp);
		kmem_slab_link_free(cachep, slabp);
		cachep->c_freep = slabp;
		break;
	}
	return slabp;
}

#if	SLAB_DEBUG_SUPPORT
/* Perform extra freeing checks.  Currently, this check is only for caches
 * that use bufctl structures within the slab.  Those which use bufctl's
 * from the internal cache have a reasonable check when the address is
 * searched for.  Called with the cache-lock held.
 */
static void *
kmem_extra_free_checks(kmem_cache_t * cachep, kmem_bufctl_t *search_bufp,
		       kmem_bufctl_t *bufp, void * objp)
{
	if (SLAB_BUFCTL(cachep->c_flags))
		return objp;

	/* Check slab's freelist to see if this obj is there. */
	for (; search_bufp; search_bufp = search_bufp->buf_nextp) {
		if (search_bufp != bufp)
			continue;
		return NULL;
	}
	return objp;
}
#endif	/* SLAB_DEBUG_SUPPORT */

/* Called with cache lock held. */
static inline void
kmem_cache_full_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	if (slabp->s_nextp->s_inuse) {
		/* Not at correct position. */
		if (cachep->c_freep == slabp)
			cachep->c_freep = slabp->s_nextp;
		kmem_slab_unlink(slabp);
		kmem_slab_link_end(cachep, slabp);
	}
}

/* Called with cache lock held. */
static inline void
kmem_cache_one_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	if (slabp->s_nextp->s_inuse == cachep->c_num) {
		kmem_slab_unlink(slabp);
		kmem_slab_link_free(cachep, slabp);
	}
	cachep->c_freep = slabp;
}

/* Returns a ptr to an obj in the given cache. */
static inline void *
__kmem_cache_alloc(kmem_cache_t *cachep, int flags)
{
	kmem_slab_t	*slabp;
	kmem_bufctl_t	*bufp;
	void		*objp;
	unsigned long	save_flags;

	/* Sanity check. */
	if (!cachep)
		goto nul_ptr;
	spin_lock_irqsave(&cachep->c_spinlock, save_flags);
try_again:
	/* Get slab alloc is to come from. */
	slabp = cachep->c_freep;

	/* Magic is a sanity check _and_ says if we need a new slab. */
	if (slabp->s_magic != SLAB_MAGIC_ALLOC)
		goto alloc_new_slab;
	/* DMA requests are 'rare' - keep out of the critical path. */
	if (flags & SLAB_DMA)
		goto search_dma;
try_again_dma:
	SLAB_STATS_INC_ALLOCED(cachep);
	SLAB_STATS_INC_ACTIVE(cachep);
	SLAB_STATS_SET_HIGH(cachep);
	slabp->s_inuse++;
	bufp = slabp->s_freep;
	slabp->s_freep = bufp->buf_nextp;
	if (slabp->s_freep) {
ret_obj:
		if (!slabp->s_index) {
			bufp->buf_slabp = slabp;
			objp = ((void*)bufp) - cachep->c_offset;
finished:
			/* The lock is not needed by the red-zone or poison ops, and the
			 * obj has been removed from the slab.  Should be safe to drop
			 * the lock here.
			 */
			spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
#if	SLAB_DEBUG_SUPPORT
			if (cachep->c_flags & SLAB_RED_ZONE)
				goto red_zone;
ret_red:
			if ((cachep->c_flags & SLAB_POISON) && kmem_check_poison_obj(cachep, objp))
				kmem_report_alloc_err("Bad poison", cachep);
#endif	/* SLAB_DEBUG_SUPPORT */
			return objp;
		}
		/* Update index ptr. */
		objp = ((bufp-slabp->s_index)*cachep->c_offset) + slabp->s_mem;
		bufp->buf_objp = objp;
		goto finished;
	}
	cachep->c_freep = slabp->s_nextp;
	goto ret_obj;

#if	SLAB_DEBUG_SUPPORT
red_zone:
	/* Set alloc red-zone, and check old one. */
	if (xchg((unsigned long *)objp, SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1)
		kmem_report_alloc_err("Bad front redzone", cachep);
	objp += BYTES_PER_WORD;
	if (xchg((unsigned long *)(objp+cachep->c_org_size), SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1)
		kmem_report_alloc_err("Bad rear redzone", cachep);
	goto ret_red;
#endif	/* SLAB_DEBUG_SUPPORT */

search_dma:
	if (slabp->s_dma || (slabp = kmem_cache_search_dma(cachep))!=kmem_slab_end(cachep))
		goto try_again_dma;
alloc_new_slab:
	/* Either out of slabs, or magic number corruption. */
	if (slabp == kmem_slab_end(cachep)) {
		/* Need a new slab.  Release the lock before calling kmem_cache_grow().
		 * This allows objs to be released back into the cache while growing.
		 */
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		if (kmem_cache_grow(cachep, flags)) {
			/* Someone may have stolen our objs.  Doesn't matter, we'll
			 * just come back here again.
			 */
			spin_lock_irq(&cachep->c_spinlock);
			goto try_again;
		}
		/* Couldn't grow, but some objs may have been freed. */
		spin_lock_irq(&cachep->c_spinlock);
		if (cachep->c_freep != kmem_slab_end(cachep))
			goto try_again;
	} else {
		/* Very serious error - maybe panic() here? */
		kmem_report_alloc_err("Bad slab magic (corrupt)", cachep);
	}
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
err_exit:
	return NULL;
nul_ptr:
	kmem_report_alloc_err("NULL ptr", NULL);
	goto err_exit;
}

/* Release an obj back to its cache.  If the obj has a constructed state,
 * it should be in this state _before_ it is released.
 */
static inline void
__kmem_cache_free(kmem_cache_t *cachep, const void *objp)
{
	kmem_slab_t	*slabp;
	kmem_bufctl_t	*bufp;
	unsigned long	save_flags;

	/* Basic sanity checks. */
	if (!cachep || !objp)
		goto null_addr;

#if	SLAB_DEBUG_SUPPORT
	/* A verify func is called without the cache-lock held. */
	if (cachep->c_flags & SLAB_DEBUG_INITIAL)
		goto init_state_check;
finished_initial:

	if (cachep->c_flags & SLAB_RED_ZONE)
		goto red_zone;
return_red:
#endif	/* SLAB_DEBUG_SUPPORT */

	spin_lock_irqsave(&cachep->c_spinlock, save_flags);

	if (SLAB_BUFCTL(cachep->c_flags))
		goto bufctl;
	bufp = (kmem_bufctl_t *)(objp+cachep->c_offset);

	/* Get slab for the object. */
#if	0
	/* _NASTY_IF/ELSE_, but avoids a 'distant' memory ref for some objects.
	 * Is this worth while? XXX
	 */
	if (cachep->c_flags & SLAB_HIGH_PACK)
		slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(bufp)]);
	else
#endif
		slabp = bufp->buf_slabp;

check_magic:
	if (slabp->s_magic != SLAB_MAGIC_ALLOC)		/* Sanity check. */
		goto bad_slab;

#if	SLAB_DEBUG_SUPPORT
	if (cachep->c_flags & SLAB_DEBUG_FREE)
		goto extra_checks;
passed_extra:
#endif	/* SLAB_DEBUG_SUPPORT */

	if (slabp->s_inuse) {		/* Sanity check. */
		SLAB_STATS_DEC_ACTIVE(cachep);
		slabp->s_inuse--;
		bufp->buf_nextp = slabp->s_freep;
		slabp->s_freep = bufp;
		if (bufp->buf_nextp) {
			if (slabp->s_inuse) {
				/* (hopefully) The most common case. */
finished:
#if	SLAB_DEBUG_SUPPORT
				if (cachep->c_flags & SLAB_POISON) {
					if (cachep->c_flags & SLAB_RED_ZONE)
						objp += BYTES_PER_WORD;
					kmem_poison_obj(cachep, objp);
				}
#endif	/* SLAB_DEBUG_SUPPORT */
				spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
				return;
			}
			kmem_cache_full_free(cachep, slabp);
			goto finished;
		}
		kmem_cache_one_free(cachep, slabp);
		goto finished;
	}

	/* Don't add to freelist. */
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	kmem_report_free_err("free with no active objs", objp, cachep);
	return;
bufctl:
	/* No 'extra' checks are performed for objs stored this way, finding
	 * the obj is check enough.
	 */
	slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(objp)]);
	bufp =	&slabp->s_index[(objp - slabp->s_mem)/cachep->c_offset];
	if (bufp->buf_objp == objp)
		goto check_magic;
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	kmem_report_free_err("Either bad obj addr or double free", objp, cachep);
	return;
#if	SLAB_DEBUG_SUPPORT
init_state_check:
	/* Need to call the slab's constructor so the
	 * caller can perform a verify of its state (debugging).
	 */
	cachep->c_ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
	goto finished_initial;
extra_checks:
	if (!kmem_extra_free_checks(cachep, slabp->s_freep, bufp, objp)) {
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		kmem_report_free_err("Double free detected during checks", objp, cachep);
		return;
	}
	goto passed_extra;
red_zone:
	/* We do not hold the cache-lock while checking the red-zone.
	 */
	objp -= BYTES_PER_WORD;
	if (xchg((unsigned long *)objp, SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) {
		/* Either write before start of obj, or a double free. */
		kmem_report_free_err("Bad front redzone", objp, cachep);
	}
	if (xchg((unsigned long *)(objp+cachep->c_org_size+BYTES_PER_WORD), SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) {
		/* Either write past end of obj, or a double free. */
		kmem_report_free_err("Bad rear redzone", objp, cachep);
	}
	goto return_red;
#endif	/* SLAB_DEBUG_SUPPORT */

bad_slab:
	/* Slab doesn't contain the correct magic num. */
	if (slabp->s_magic == SLAB_MAGIC_DESTROYED) {
		/* Magic num says this is a destroyed slab. */
		kmem_report_free_err("free from inactive slab", objp, cachep);
	} else
		kmem_report_free_err("Bad obj addr", objp, cachep);
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);

#if 1
/* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
*(int *) 0 = 0;
#endif

	return;
null_addr:
	kmem_report_free_err("NULL ptr", objp, cachep);
	return;
}

void *
kmem_cache_alloc(kmem_cache_t *cachep, int flags)
{
	return __kmem_cache_alloc(cachep, flags);
}

void
kmem_cache_free(kmem_cache_t *cachep, void *objp)
{
	__kmem_cache_free(cachep, objp);
}

void *
kmalloc(size_t size, int flags)
{
	cache_sizes_t	*csizep = cache_sizes;

	for (; csizep->cs_size; csizep++) {
		if (size > csizep->cs_size)
			continue;
		return __kmem_cache_alloc(csizep->cs_cachep, flags);
	}
	printk(KERN_ERR "kmalloc: Size (%lu) too large\n", (unsigned long) size);
	return NULL;
}

void
kfree(const void *objp)
{
	struct page *page;
	int	nr;

	if (!objp)
		goto null_ptr;
	nr = MAP_NR(objp);
	if (nr >= max_mapnr)
		goto bad_ptr;

	/* Assume we own the page structure - hence no locking.
	 * If someone is misbehaving (eg. someone calling us with a bad
	 * address), then access to the page structure can race with the
	 * kmem_slab_destory() code.  Need to add a spin_lock to each page
	 * structure, which would be useful in threading the gfp() functions....
	 */
	page = &mem_map[nr];
	if (PageSlab(page)) {
		kmem_cache_t	*cachep;

		/* Here, we (again) assume the obj address is good.
		 * If it isn't, and happens to map onto another
		 * general-cache page which has no active objs, then
		 * we race....
		 */
		cachep = SLAB_GET_PAGE_CACHE(page);
		if (cachep && (cachep->c_flags & SLAB_CFLGS_GENERAL)) {
			__kmem_cache_free(cachep, objp);
			return;
		}
	}
bad_ptr:
	printk(KERN_ERR "kfree: Bad obj %p\n", objp);

#if 1
/* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
*(int *) 0 = 0;
#endif

null_ptr:
	return;
}

void
kfree_s(const void *objp, size_t size)
{
	struct page *page;
	int	nr;

	if (!objp)
		goto null_ptr;
	nr = MAP_NR(objp);
	if (nr >= max_mapnr)
		goto null_ptr;
	/* See comment in kfree() */
	page = &mem_map[nr];
	if (PageSlab(page)) {
		kmem_cache_t	*cachep;
		/* See comment in kfree() */
		cachep = SLAB_GET_PAGE_CACHE(page);
		if (cachep && cachep->c_flags & SLAB_CFLGS_GENERAL) {
			if (size <= cachep->c_org_size) {	/* XXX better check */
				__kmem_cache_free(cachep, objp);
				return;
			}
		}
	}
null_ptr:
	printk(KERN_ERR "kfree_s: Bad obj %p\n", objp);
	return;
}

kmem_cache_t *
kmem_find_general_cachep(size_t size)
{
	cache_sizes_t	*csizep = cache_sizes;

	/* This function could be moved to the header-file, and
	 * made inline so consumers can quickly determine what
	 * cache-ptr they require.
	 */
	for (; csizep->cs_size; csizep++) {
		if (size > csizep->cs_size)
			continue;
		break;
	}
	return csizep->cs_cachep;
}


/* Called from try_to_free_page().
 * This function _cannot_ be called within a int, but it
 * can be interrupted.
 */
int
kmem_cache_reap(int pri, int dma, int wait)
{
	kmem_slab_t	*slabp;
	kmem_cache_t	*searchp;
	kmem_cache_t	*best_cachep;
	unsigned int	 scan;
	unsigned int	 reap_level;
	static unsigned long	call_count = 0;

	if (in_interrupt()) {
		printk("kmem_cache_reap() called within int!\n");
		return 0;
	}

	/* We really need a test semphore op so we can avoid sleeping when
	 * !wait is true.
	 */
	down(&cache_chain_sem);

	scan = 10-pri;
	if (pri == 6 && !dma) {
		if (++call_count == 199) {
			/* Hack Alert!
			 * Occassionally we try hard to reap a slab.
			 */
			call_count = 0UL;
			reap_level = 0;
			scan += 2;
		} else
			reap_level = 3;
	} else {
		if (pri >= 5) {
			/* We also come here for dma==1 at pri==6, just
			 * to try that bit harder (assumes that there are
			 * less DMAable pages in a system - not always true,
			 * but this doesn't hurt).
			 */
			reap_level = 2;
		} else
			reap_level = 0;
	}

	best_cachep = NULL;
	searchp = clock_searchp;
	do {
		unsigned int	full_free;
		unsigned int	dma_flag;

		/* It's safe to test this without holding the cache-lock. */
		if (searchp->c_flags & SLAB_NO_REAP)
			goto next;
		spin_lock_irq(&searchp->c_spinlock);
		if (searchp->c_growing)
			goto next_unlock;
		if (searchp->c_dflags & SLAB_CFLGS_GROWN) {
			searchp->c_dflags &= ~SLAB_CFLGS_GROWN;
			goto next_unlock;
		}
		/* Sanity check for corruption of static values. */
		if (searchp->c_inuse || searchp->c_magic != SLAB_C_MAGIC) {
			spin_unlock_irq(&searchp->c_spinlock);
			printk(KERN_ERR "kmem_reap: Corrupted cache struct for %s\n", searchp->c_name);
			goto next;
		}
		dma_flag = 0;
		full_free = 0;

		/* Count num of fully free slabs.  Hopefully there are not many,
		 * we are holding the cache lock....
		 */
		slabp = searchp->c_lastp;
		while (!slabp->s_inuse && slabp != kmem_slab_end(searchp)) {
			slabp = slabp->s_prevp;
			full_free++;
			if (slabp->s_dma)
				dma_flag++;
		}
		spin_unlock_irq(&searchp->c_spinlock);

		if (dma && !dma_flag)
			goto next;

		if (full_free) {
			if (full_free >= 10) {
				best_cachep = searchp;
				break;
			}

			/* Try to avoid slabs with constructors and/or
			 * more than one page per slab (as it can be difficult
			 * to get high orders from gfp()).
			 */
			if (pri == 6) {	/* magic '6' from try_to_free_page() */
				if (searchp->c_gfporder || searchp->c_ctor)
					full_free--;
			}
			if (full_free >= reap_level) {
				reap_level = full_free;
				best_cachep = searchp;
			}
		}
		goto next;
next_unlock:
		spin_unlock_irq(&searchp->c_spinlock);
next:
		searchp = searchp->c_nextp;
	} while (--scan && searchp != clock_searchp);

	clock_searchp = searchp;
	up(&cache_chain_sem);

	if (!best_cachep) {
		/* couldn't find anthying to reap */
		return 0;
	}

	spin_lock_irq(&best_cachep->c_spinlock);
	if (!best_cachep->c_growing && !(slabp = best_cachep->c_lastp)->s_inuse && slabp != kmem_slab_end(best_cachep)) {
		if (dma) {
			do {
				if (slabp->s_dma)
					goto good_dma;
				slabp = slabp->s_prevp;
			} while (!slabp->s_inuse && slabp != kmem_slab_end(best_cachep));

			/* Didn't found a DMA slab (there was a free one -
			 * must have been become active).
			 */
			goto dma_fail;
good_dma:
		}
		if (slabp == best_cachep->c_freep)
			best_cachep->c_freep = slabp->s_nextp;
		kmem_slab_unlink(slabp);
		SLAB_STATS_INC_REAPED(best_cachep);

		/* Safe to drop the lock.  The slab is no longer linked to the
		 * cache.
		 */
		spin_unlock_irq(&best_cachep->c_spinlock);
		kmem_slab_destroy(best_cachep, slabp);
		return 1;
	}
dma_fail:
	spin_unlock_irq(&best_cachep->c_spinlock);
	return 0;
}

#if	SLAB_SELFTEST
/* A few v. simple tests */
static void
kmem_self_test(void)
{
	kmem_cache_t	*test_cachep;

	printk(KERN_INFO "kmem_test() - start\n");
	test_cachep = kmem_cache_create("test-cachep", 16, 0, SLAB_RED_ZONE|SLAB_POISON, NULL, NULL);
	if (test_cachep) {
		char *objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL);
		if (objp) {
			/* Write in front and past end, red-zone test. */
			*(objp-1) = 1;
			*(objp+16) = 1;
			kmem_cache_free(test_cachep, objp);

			/* Mess up poisoning. */
			*objp = 10;
			objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL);
			kmem_cache_free(test_cachep, objp);

			/* Mess up poisoning (again). */
			*objp = 10;
			kmem_cache_shrink(test_cachep);
		}
	}
	printk(KERN_INFO "kmem_test() - finished\n");
}
#endif	/* SLAB_SELFTEST */

#if	defined(CONFIG_PROC_FS)
/* /proc/slabinfo
 * cache-name num-active-objs total-objs num-active-slabs total-slabs num-pages-per-slab
 */
int
get_slabinfo(char *buf)
{
	kmem_cache_t	*cachep;
	kmem_slab_t	*slabp;
	unsigned long	active_objs;
	unsigned long	save_flags;
	unsigned long	num_slabs;
	unsigned long	num_objs;
	int		len=0;
#if	SLAB_STATS
	unsigned long	active_slabs;
#endif	/* SLAB_STATS */

	__save_flags(save_flags);

	/* Output format version, so at least we can change it without _too_
	 * many complaints.
	 */
#if	SLAB_STATS
	len = sprintf(buf, "slabinfo - version: 1.0 (statistics)\n");
#else
	len = sprintf(buf, "slabinfo - version: 1.0\n");
#endif	/* SLAB_STATS */
	down(&cache_chain_sem);
	cachep = &cache_cache;
	do {
#if	SLAB_STATS
		active_slabs = 0;
#endif	/* SLAB_STATS */
		num_slabs = active_objs = 0;
		spin_lock_irq(&cachep->c_spinlock);
		for (slabp = cachep->c_firstp; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) {
			active_objs += slabp->s_inuse;
			num_slabs++;
#if	SLAB_STATS
			if (slabp->s_inuse)
				active_slabs++;
#endif	/* SLAB_STATS */
		}
		num_objs = cachep->c_num*num_slabs;
#if	SLAB_STATS
		{
		unsigned long errors;
		unsigned long high = cachep->c_high_mark;
		unsigned long grown = cachep->c_grown;
		unsigned long reaped = cachep->c_reaped;
		unsigned long allocs = cachep->c_num_allocations;
		errors = (unsigned long) atomic_read(&cachep->c_errors);
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		len += sprintf(buf+len, "%-16s %6lu %6lu %4lu %4lu %4lu %6lu %7lu %5lu %4lu %4lu\n",
				cachep->c_name, active_objs, num_objs, active_slabs, num_slabs,
				(1<<cachep->c_gfporder)*num_slabs,
				high, allocs, grown, reaped, errors);
		}
#else
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		len += sprintf(buf+len, "%-17s %6lu %6lu\n", cachep->c_name, active_objs, num_objs);
#endif	/* SLAB_STATS */
	} while ((cachep = cachep->c_nextp) != &cache_cache);
	up(&cache_chain_sem);

	return len;
}
#endif	/* CONFIG_PROC_FS */