1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
|
/*
* net/sched/sch_csz.c Clark-Shenker-Zhang scheduler.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/notifier.h>
#include <net/ip.h>
#include <net/route.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
/* Clark-Shenker-Zhang algorithm.
=======================================
SOURCE.
David D. Clark, Scott Shenker and Lixia Zhang
"Supporting Real-Time Applications in an Integrated Services Packet
Network: Architecture and Mechanism".
CBQ presents a flexible universal algorithm for packet scheduling,
but it has pretty poor delay characteristics.
Round-robin scheduling and link-sharing goals
apparently contradict minimization of network delay and jitter.
Moreover, correct handling of predictive flows seems to be
impossible in CBQ.
CSZ presents a more precise but less flexible and less efficient
approach. As I understand it, the main idea is to create
WFQ flows for each guaranteed service and to allocate
the rest of bandwith to dummy flow-0. Flow-0 comprises
the predictive services and the best effort traffic;
it is handled by a priority scheduler with the highest
priority band allocated for predictive services, and the rest ---
to the best effort packets.
Note that in CSZ flows are NOT limited to their bandwidth. It
is supposed that the flow passed admission control at the edge
of the QoS network and it doesn't need further shaping. Any
attempt to improve the flow or to shape it to a token bucket
at intermediate hops will introduce undesired delays and raise
jitter.
At the moment CSZ is the only scheduler that provides
true guaranteed service. Another schemes (including CBQ)
do not provide guaranteed delay and randomize jitter.
There is a proof (Sally Floyd), that delay
can be estimated by a IntServ compliant formula.
This result is true formally, but it is wrong in principle.
It takes into account only round-robin delays,
ignoring delays introduced by link sharing i.e. overlimiting.
Note that temporary overlimits are inevitable because
real links are not ideal, and the real algorithm must take this
into account.
ALGORITHM.
--- Notations.
$B$ is link bandwidth (bits/sec).
$I$ is set of all flows, including flow $0$.
Every flow $a \in I$ has associated bandwidth slice $r_a < 1$ and
$\sum_{a \in I} r_a = 1$.
--- Flow model.
Let $m_a$ is the number of backlogged bits in flow $a$.
The flow is {\em active}, if $m_a > 0$.
This number is a discontinuous function of time;
when a packet $i$ arrives:
\[
m_a(t_i+0) - m_a(t_i-0) = L^i,
\]
where $L^i$ is the length of the arrived packet.
The flow queue is drained continuously until $m_a == 0$:
\[
{d m_a \over dt} = - { B r_a \over \sum_{b \in A} r_b}.
\]
I.e. flow rates are their allocated rates proportionally
scaled to take all available link bandwidth. Apparently,
it is not the only possible policy. F.e. CBQ classes
without borrowing would be modelled by:
\[
{d m_a \over dt} = - B r_a .
\]
More complicated hierarchical bandwidth allocation
policies are possible, but unfortunately, the basic
flow equations have a simple solution only for proportional
scaling.
--- Departure times.
We calculate the time until the last bit of packet is sent:
\[
E_a^i(t) = { m_a(t_i) - \delta_a(t) \over r_a },
\]
where $\delta_a(t)$ is number of bits drained since $t_i$.
We have to evaluate $E_a^i$ for all queued packets,
then find the packet with minimal $E_a^i$ and send it.
This sounds good, but direct implementation of the algorithm
is absolutely infeasible. Luckily, if flow rates
are scaled proportionally, the equations have a simple solution.
The differential equation for $E_a^i$ is
\[
{d E_a^i (t) \over dt } = - { d \delta_a(t) \over dt} { 1 \over r_a} =
{ B \over \sum_{b \in A} r_b}
\]
with initial condition
\[
E_a^i (t_i) = { m_a(t_i) \over r_a } .
\]
Let's introduce an auxiliary function $R(t)$:
--- Round number.
Consider the following model: we rotate over active flows,
sending $r_a B$ bits from every flow, so that we send
$B \sum_{a \in A} r_a$ bits per round, that takes
$\sum_{a \in A} r_a$ seconds.
Hence, $R(t)$ (round number) is a monotonically increasing
linear function of time when $A$ is not changed
\[
{ d R(t) \over dt } = { 1 \over \sum_{a \in A} r_a }
\]
and it is continuous when $A$ changes.
The central observation is that the quantity
$F_a^i = R(t) + E_a^i(t)/B$ does not depend on time at all!
$R(t)$ does not depend on flow, so that $F_a^i$ can be
calculated only once on packet arrival, and we need not
recalculate $E$ numbers and resorting queues.
The number $F_a^i$ is called finish number of the packet.
It is just the value of $R(t)$ when the last bit of packet
is sent out.
Maximal finish number on flow is called finish number of flow
and minimal one is "start number of flow".
Apparently, flow is active if and only if $F_a \leq R$.
When a packet of length $L_i$ bit arrives to flow $a$ at time $t_i$,
we calculate $F_a^i$ as:
If flow was inactive ($F_a < R$):
$F_a^i = R(t) + {L_i \over B r_a}$
otherwise
$F_a^i = F_a + {L_i \over B r_a}$
These equations complete the algorithm specification.
It looks pretty hairy, but there is a simple
procedure for solving these equations.
See procedure csz_update(), that is a generalization of
the algorithm from S. Keshav's thesis Chapter 3
"Efficient Implementation of Fair Queeing".
NOTES.
* We implement only the simplest variant of CSZ,
when flow-0 is a explicit 4band priority fifo.
This is bad, but we need a "peek" operation in addition
to "dequeue" to implement complete CSZ.
I do not want to do that, unless it is absolutely
necessary.
* A primitive support for token bucket filtering
presents itself too. It directly contradicts CSZ, but
even though the Internet is on the globe ... :-)
"the edges of the network" really exist.
BUGS.
* Fixed point arithmetic is overcomplicated, suboptimal and even
wrong. Check it later. */
/* This number is arbitrary */
#define CSZ_GUARANTEED 16
#define CSZ_FLOWS (CSZ_GUARANTEED+4)
struct csz_head
{
struct csz_head *snext;
struct csz_head *sprev;
struct csz_head *fnext;
struct csz_head *fprev;
};
struct csz_flow
{
struct csz_head *snext;
struct csz_head *sprev;
struct csz_head *fnext;
struct csz_head *fprev;
/* Parameters */
struct tc_ratespec rate;
struct tc_ratespec slice;
u32 *L_tab; /* Lookup table for L/(B*r_a) values */
unsigned long limit; /* Maximal length of queue */
#ifdef CSZ_PLUS_TBF
struct tc_ratespec peakrate;
__u32 buffer; /* Depth of token bucket, normalized
as L/(B*r_a) */
__u32 mtu;
#endif
/* Variables */
#ifdef CSZ_PLUS_TBF
unsigned long tokens; /* Tokens number: usecs */
psched_time_t t_tbf;
unsigned long R_tbf;
int throttled;
#endif
unsigned peeked;
unsigned long start; /* Finish number of the first skb */
unsigned long finish; /* Finish number of the flow */
struct sk_buff_head q; /* FIFO queue */
};
#define L2R(f,L) ((f)->L_tab[(L)>>(f)->slice.cell_log])
struct csz_sched_data
{
/* Parameters */
unsigned char rate_log; /* fixed point position for rate;
* really we need not it */
unsigned char R_log; /* fixed point position for round number */
unsigned char delta_log; /* 1<<delta_log is maximal timeout in usecs;
* 21 <-> 2.1sec is MAXIMAL value */
/* Variables */
struct tcf_proto *filter_list;
u8 prio2band[TC_PRIO_MAX+1];
#ifdef CSZ_PLUS_TBF
struct timer_list wd_timer;
long wd_expires;
#endif
psched_time_t t_c; /* Time check-point */
unsigned long R_c; /* R-number check-point */
unsigned long rate; /* Current sum of rates of active flows */
struct csz_head s; /* Flows sorted by "start" */
struct csz_head f; /* Flows sorted by "finish" */
struct sk_buff_head other[4];/* Predicted (0) and the best efforts
classes (1,2,3) */
struct csz_flow flow[CSZ_GUARANTEED]; /* Array of flows */
};
/* These routines (csz_insert_finish and csz_insert_start) are
the most time consuming part of all the algorithm.
We insert to sorted list, so that time
is linear with respect to number of active flows in the worst case.
Note that we have not very large number of guaranteed flows,
so that logarithmic algorithms (heap etc.) are useless,
they are slower than linear one when length of list <= 32.
Heap would take sence if we used WFQ for best efforts
flows, but SFQ is better choice in this case.
*/
/* Insert flow "this" to the list "b" before
flow with greater finish number.
*/
#if 0
/* Scan forward */
extern __inline__ void csz_insert_finish(struct csz_head *b,
struct csz_flow *this)
{
struct csz_head *f = b->fnext;
unsigned long finish = this->finish;
while (f != b) {
if (((struct csz_flow*)f)->finish - finish > 0)
break;
f = f->fnext;
}
this->fnext = f;
this->fprev = f->fprev;
this->fnext->fprev = this->fprev->fnext = (struct csz_head*)this;
}
#else
/* Scan backward */
extern __inline__ void csz_insert_finish(struct csz_head *b,
struct csz_flow *this)
{
struct csz_head *f = b->fprev;
unsigned long finish = this->finish;
while (f != b) {
if (((struct csz_flow*)f)->finish - finish <= 0)
break;
f = f->fprev;
}
this->fnext = f->fnext;
this->fprev = f;
this->fnext->fprev = this->fprev->fnext = (struct csz_head*)this;
}
#endif
/* Insert flow "this" to the list "b" before
flow with greater start number.
*/
extern __inline__ void csz_insert_start(struct csz_head *b,
struct csz_flow *this)
{
struct csz_head *f = b->snext;
unsigned long start = this->start;
while (f != b) {
if (((struct csz_flow*)f)->start - start > 0)
break;
f = f->snext;
}
this->snext = f;
this->sprev = f->sprev;
this->snext->sprev = this->sprev->snext = (struct csz_head*)this;
}
/* Calculate and return current round number.
It is another time consuming part, but
it is impossible to avoid it.
It costs O(N) that make all the algorithm useful only
to play with closest to ideal fluid model.
There exist less academic, but more practical modifications,
which might have even better characteristics (WF2Q+, HPFQ, HFSC)
*/
static unsigned long csz_update(struct Qdisc *sch)
{
struct csz_sched_data *q = (struct csz_sched_data*)sch->data;
struct csz_flow *a;
unsigned long F;
unsigned long tmp;
psched_time_t now;
unsigned long delay;
unsigned long R_c;
PSCHED_GET_TIME(now);
delay = PSCHED_TDIFF_SAFE(now, q->t_c, 0, goto do_reset);
if (delay>>q->delta_log) {
do_reset:
/* Delta is too large.
It is possible if MTU/BW > 1<<q->delta_log
(i.e. configuration error) or because of hardware
fault. We have no choice...
*/
qdisc_reset(sch);
return 0;
}
q->t_c = now;
for (;;) {
a = (struct csz_flow*)q->f.fnext;
/* No more active flows. Reset R and exit. */
if (a == (struct csz_flow*)&q->f) {
#ifdef CSZ_DEBUG
if (q->rate) {
printk("csz_update: rate!=0 on inactive csz\n");
q->rate = 0;
}
#endif
q->R_c = 0;
return 0;
}
F = a->finish;
#ifdef CSZ_DEBUG
if (q->rate == 0) {
printk("csz_update: rate=0 on active csz\n");
goto do_reset;
}
#endif
/*
* tmp = (t - q->t_c)/q->rate;
*/
tmp = ((delay<<(31-q->delta_log))/q->rate)>>(31-q->delta_log+q->R_log);
tmp += q->R_c;
/* OK, this flow (and all flows with greater
finish numbers) is still active */
if (F - tmp > 0)
break;
/* It is more not active */
a->fprev->fnext = a->fnext;
a->fnext->fprev = a->fprev;
/*
* q->t_c += (F - q->R_c)*q->rate
*/
tmp = ((F-q->R_c)*q->rate)<<q->R_log;
R_c = F;
q->rate -= a->slice.rate;
if ((long)(delay - tmp) >= 0) {
delay -= tmp;
continue;
}
delay = 0;
}
q->R_c = tmp;
return tmp;
}
unsigned csz_classify(struct sk_buff *skb, struct csz_sched_data *q)
{
return CSZ_GUARANTEED;
}
static int
csz_enqueue(struct sk_buff *skb, struct Qdisc* sch)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
unsigned flow_id = csz_classify(skb, q);
unsigned long R;
int prio = 0;
struct csz_flow *this;
if (flow_id >= CSZ_GUARANTEED) {
prio = flow_id - CSZ_GUARANTEED;
flow_id = 0;
}
this = &q->flow[flow_id];
if (this->q.qlen >= this->limit || this->L_tab == NULL) {
sch->stats.drops++;
kfree_skb(skb);
return NET_XMIT_DROP;
}
R = csz_update(sch);
if ((long)(this->finish - R) >= 0) {
/* It was active */
this->finish += L2R(this,skb->len);
} else {
/* It is inactive; activate it */
this->finish = R + L2R(this,skb->len);
q->rate += this->slice.rate;
csz_insert_finish(&q->f, this);
}
/* If this flow was empty, remember start number
and insert it into start queue */
if (this->q.qlen == 0) {
this->start = this->finish;
csz_insert_start(&q->s, this);
}
if (flow_id)
skb_queue_tail(&this->q, skb);
else
skb_queue_tail(&q->other[prio], skb);
sch->q.qlen++;
sch->stats.bytes += skb->len;
sch->stats.packets++;
return 0;
}
static __inline__ struct sk_buff *
skb_dequeue_best(struct csz_sched_data * q)
{
int i;
struct sk_buff *skb;
for (i=0; i<4; i++) {
skb = skb_dequeue(&q->other[i]);
if (skb) {
q->flow[0].q.qlen--;
return skb;
}
}
return NULL;
}
static __inline__ struct sk_buff *
skb_peek_best(struct csz_sched_data * q)
{
int i;
struct sk_buff *skb;
for (i=0; i<4; i++) {
skb = skb_peek(&q->other[i]);
if (skb)
return skb;
}
return NULL;
}
#ifdef CSZ_PLUS_TBF
static void csz_watchdog(unsigned long arg)
{
struct Qdisc *sch = (struct Qdisc*)arg;
qdisc_wakeup(sch->dev);
}
static __inline__ void
csz_move_queue(struct csz_flow *this, long delta)
{
this->fprev->fnext = this->fnext;
this->fnext->fprev = this->fprev;
this->start += delta;
this->finish += delta;
csz_insert_finish(this);
}
static __inline__ int csz_enough_tokens(struct csz_sched_data *q,
struct csz_flow *this,
struct sk_buff *skb)
{
long toks;
long shift;
psched_time_t now;
PSCHED_GET_TIME(now);
toks = PSCHED_TDIFF(now, t_tbf) + this->tokens - L2R(q,this,skb->len);
shift = 0;
if (this->throttled) {
/* Remember aposteriory delay */
unsigned long R = csz_update(q);
shift = R - this->R_tbf;
this->R_tbf = R;
}
if (toks >= 0) {
/* Now we have enough tokens to proceed */
this->tokens = toks <= this->depth ? toks : this->depth;
this->t_tbf = now;
if (!this->throttled)
return 1;
/* Flow was throttled. Update its start&finish numbers
with delay calculated aposteriori.
*/
this->throttled = 0;
if (shift > 0)
csz_move_queue(this, shift);
return 1;
}
if (!this->throttled) {
/* Flow has just been throttled; remember
current round number to calculate aposteriori delay
*/
this->throttled = 1;
this->R_tbf = csz_update(q);
}
/* Move all the queue to the time when it will be allowed to send.
We should translate time to round number, but it is impossible,
so that we made the most conservative estimate i.e. we suppose
that only this flow is active and, hence, R = t.
Really toks <= R <= toks/r_a.
This apriory shift in R will be adjusted later to reflect
real delay. We cannot avoid it because of:
- throttled flow continues to be active from the viewpoint
of CSZ, so that it would acquire the highest priority,
if you not adjusted start numbers.
- Eventually, finish number would become less than round
number and flow were declared inactive.
*/
toks = -toks;
/* Remeber, that we should start watchdog */
if (toks < q->wd_expires)
q->wd_expires = toks;
toks >>= q->R_log;
shift += toks;
if (shift > 0) {
this->R_tbf += toks;
csz_move_queue(this, shift);
}
csz_insert_start(this);
return 0;
}
#endif
static struct sk_buff *
csz_dequeue(struct Qdisc* sch)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
struct sk_buff *skb;
struct csz_flow *this;
#ifdef CSZ_PLUS_TBF
q->wd_expires = 0;
#endif
this = (struct csz_flow*)q->s.snext;
while (this != (struct csz_flow*)&q->s) {
/* First of all: unlink from start list */
this->sprev->snext = this->snext;
this->snext->sprev = this->sprev;
if (this != &q->flow[0]) { /* Guaranteed flow */
skb = __skb_dequeue(&this->q);
if (skb) {
#ifdef CSZ_PLUS_TBF
if (this->depth) {
if (!csz_enough_tokens(q, this, skb))
continue;
}
#endif
if (this->q.qlen) {
struct sk_buff *nskb = skb_peek(&this->q);
this->start += L2R(this,nskb->len);
csz_insert_start(&q->s, this);
}
sch->q.qlen--;
return skb;
}
} else { /* Predicted or best effort flow */
skb = skb_dequeue_best(q);
if (skb) {
unsigned peeked = this->peeked;
this->peeked = 0;
if (--this->q.qlen) {
struct sk_buff *nskb;
unsigned dequeued = L2R(this,skb->len);
/* We got not the same thing that
peeked earlier; adjust start number
*/
if (peeked != dequeued && peeked)
this->start += dequeued - peeked;
nskb = skb_peek_best(q);
peeked = L2R(this,nskb->len);
this->start += peeked;
this->peeked = peeked;
csz_insert_start(&q->s, this);
}
sch->q.qlen--;
return skb;
}
}
}
#ifdef CSZ_PLUS_TBF
/* We are about to return no skb.
Schedule watchdog timer, if it occurred because of shaping.
*/
if (q->wd_expires) {
unsigned long delay = PSCHED_US2JIFFIE(q->wd_expires);
del_timer(&q->wd_timer);
if (delay == 0)
delay = 1;
q->wd_timer.expires = jiffies + delay;
add_timer(&q->wd_timer);
sch->stats.overlimits++;
}
#endif
return NULL;
}
static void
csz_reset(struct Qdisc* sch)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
int i;
for (i=0; i<4; i++)
skb_queue_purge(&q->other[i]);
for (i=0; i<CSZ_GUARANTEED; i++) {
struct csz_flow *this = q->flow + i;
skb_queue_purge(&this->q);
this->snext = this->sprev =
this->fnext = this->fprev = (struct csz_head*)this;
this->start = this->finish = 0;
}
q->s.snext = q->s.sprev = &q->s;
q->f.fnext = q->f.fprev = &q->f;
q->R_c = 0;
#ifdef CSZ_PLUS_TBF
PSCHED_GET_TIME(&q->t_tbf);
q->tokens = q->depth;
del_timer(&q->wd_timer);
#endif
sch->q.qlen = 0;
}
static void
csz_destroy(struct Qdisc* sch)
{
MOD_DEC_USE_COUNT;
}
static int csz_init(struct Qdisc *sch, struct rtattr *opt)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
struct rtattr *tb[TCA_CSZ_PTAB];
struct tc_csz_qopt *qopt;
int i;
rtattr_parse(tb, TCA_CSZ_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt));
if (tb[TCA_CSZ_PARMS-1] == NULL ||
RTA_PAYLOAD(tb[TCA_CSZ_PARMS-1]) < sizeof(*qopt))
return -EINVAL;
qopt = RTA_DATA(tb[TCA_CSZ_PARMS-1]);
q->R_log = qopt->R_log;
q->delta_log = qopt->delta_log;
for (i=0; i<=TC_PRIO_MAX; i++) {
if (qopt->priomap[i] >= CSZ_FLOWS)
return -EINVAL;
q->prio2band[i] = qopt->priomap[i];
}
for (i=0; i<4; i++)
skb_queue_head_init(&q->other[i]);
for (i=0; i<CSZ_GUARANTEED; i++) {
struct csz_flow *this = q->flow + i;
skb_queue_head_init(&this->q);
this->snext = this->sprev =
this->fnext = this->fprev = (struct csz_head*)this;
this->start = this->finish = 0;
}
q->s.snext = q->s.sprev = &q->s;
q->f.fnext = q->f.fprev = &q->f;
q->R_c = 0;
#ifdef CSZ_PLUS_TBF
init_timer(&q->wd_timer);
q->wd_timer.data = (unsigned long)sch;
q->wd_timer.function = csz_watchdog;
#endif
MOD_INC_USE_COUNT;
return 0;
}
#ifdef CONFIG_RTNETLINK
static int csz_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
unsigned char *b = skb->tail;
struct rtattr *rta;
struct tc_csz_qopt opt;
rta = (struct rtattr*)b;
RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
opt.flows = CSZ_FLOWS;
memcpy(&opt.priomap, q->prio2band, TC_PRIO_MAX+1);
RTA_PUT(skb, TCA_CSZ_PARMS, sizeof(opt), &opt);
rta->rta_len = skb->tail - b;
return skb->len;
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
#endif
static int csz_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new,
struct Qdisc **old)
{
return -EINVAL;
}
static struct Qdisc * csz_leaf(struct Qdisc *sch, unsigned long cl)
{
return NULL;
}
static unsigned long csz_get(struct Qdisc *sch, u32 classid)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
unsigned long band = TC_H_MIN(classid) - 1;
if (band >= CSZ_FLOWS)
return 0;
if (band < CSZ_GUARANTEED && q->flow[band].L_tab == NULL)
return 0;
return band+1;
}
static unsigned long csz_bind(struct Qdisc *sch, unsigned long parent, u32 classid)
{
return csz_get(sch, classid);
}
static void csz_put(struct Qdisc *sch, unsigned long cl)
{
return;
}
static int csz_change(struct Qdisc *sch, u32 handle, u32 parent, struct rtattr **tca, unsigned long *arg)
{
unsigned long cl = *arg;
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
struct rtattr *opt = tca[TCA_OPTIONS-1];
struct rtattr *tb[TCA_CSZ_PTAB];
struct tc_csz_copt *copt;
rtattr_parse(tb, TCA_CSZ_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt));
if (tb[TCA_CSZ_PARMS-1] == NULL ||
RTA_PAYLOAD(tb[TCA_CSZ_PARMS-1]) < sizeof(*copt))
return -EINVAL;
copt = RTA_DATA(tb[TCA_CSZ_PARMS-1]);
if (tb[TCA_CSZ_RTAB-1] &&
RTA_PAYLOAD(tb[TCA_CSZ_RTAB-1]) < 1024)
return -EINVAL;
if (cl) {
struct csz_flow *a;
cl--;
if (cl >= CSZ_FLOWS)
return -ENOENT;
if (cl >= CSZ_GUARANTEED || q->flow[cl].L_tab == NULL)
return -EINVAL;
a = &q->flow[cl];
spin_lock_bh(&sch->dev->queue_lock);
#if 0
a->rate_log = copt->rate_log;
#endif
#ifdef CSZ_PLUS_TBF
a->limit = copt->limit;
a->rate = copt->rate;
a->buffer = copt->buffer;
a->mtu = copt->mtu;
#endif
if (tb[TCA_CSZ_RTAB-1])
memcpy(a->L_tab, RTA_DATA(tb[TCA_CSZ_RTAB-1]), 1024);
spin_unlock_bh(&sch->dev->queue_lock);
return 0;
}
/* NI */
return 0;
}
static int csz_delete(struct Qdisc *sch, unsigned long cl)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
struct csz_flow *a;
cl--;
if (cl >= CSZ_FLOWS)
return -ENOENT;
if (cl >= CSZ_GUARANTEED || q->flow[cl].L_tab == NULL)
return -EINVAL;
a = &q->flow[cl];
spin_lock_bh(&sch->dev->queue_lock);
a->fprev->fnext = a->fnext;
a->fnext->fprev = a->fprev;
a->sprev->snext = a->snext;
a->snext->sprev = a->sprev;
a->start = a->finish = 0;
kfree(xchg(&q->flow[cl].L_tab, NULL));
spin_unlock_bh(&sch->dev->queue_lock);
return 0;
}
#ifdef CONFIG_RTNETLINK
static int csz_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
unsigned char *b = skb->tail;
struct rtattr *rta;
struct tc_csz_copt opt;
tcm->tcm_handle = sch->handle|cl;
cl--;
if (cl > CSZ_FLOWS)
goto rtattr_failure;
if (cl < CSZ_GUARANTEED) {
struct csz_flow *f = &q->flow[cl];
if (f->L_tab == NULL)
goto rtattr_failure;
rta = (struct rtattr*)b;
RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
opt.limit = f->limit;
opt.rate = f->rate;
opt.slice = f->slice;
memset(&opt.peakrate, 0, sizeof(opt.peakrate));
#ifdef CSZ_PLUS_TBF
opt.buffer = f->buffer;
opt.mtu = f->mtu;
#else
opt.buffer = 0;
opt.mtu = 0;
#endif
RTA_PUT(skb, TCA_CSZ_PARMS, sizeof(opt), &opt);
rta->rta_len = skb->tail - b;
}
return skb->len;
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
#endif
static void csz_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
int prio = 0;
if (arg->stop)
return;
for (prio = 0; prio < CSZ_FLOWS; prio++) {
if (arg->count < arg->skip) {
arg->count++;
continue;
}
if (prio < CSZ_GUARANTEED && q->flow[prio].L_tab == NULL) {
arg->count++;
continue;
}
if (arg->fn(sch, prio+1, arg) < 0) {
arg->stop = 1;
break;
}
arg->count++;
}
}
static struct tcf_proto ** csz_find_tcf(struct Qdisc *sch, unsigned long cl)
{
struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
if (cl)
return NULL;
return &q->filter_list;
}
struct Qdisc_class_ops csz_class_ops =
{
csz_graft,
csz_leaf,
csz_get,
csz_put,
csz_change,
csz_delete,
csz_walk,
csz_find_tcf,
csz_bind,
csz_put,
#ifdef CONFIG_RTNETLINK
csz_dump_class,
#endif
};
struct Qdisc_ops csz_qdisc_ops =
{
NULL,
&csz_class_ops,
"csz",
sizeof(struct csz_sched_data),
csz_enqueue,
csz_dequeue,
NULL,
NULL,
csz_init,
csz_reset,
csz_destroy,
NULL /* csz_change */,
#ifdef CONFIG_RTNETLINK
csz_dump,
#endif
};
#ifdef MODULE
int init_module(void)
{
return register_qdisc(&csz_qdisc_ops);
}
void cleanup_module(void)
{
unregister_qdisc(&csz_qdisc_ops);
}
#endif
|