1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
|
/*
* linux/net/sunrpc/sched.c
*
* Scheduling for synchronous and asynchronous RPC requests.
*
* Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
*/
#define __NO_VERSION__
#include <linux/module.h>
#define __KERNEL_SYSCALLS__
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/malloc.h>
#include <linux/unistd.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/sunrpc/clnt.h>
#ifdef RPC_DEBUG
#define RPCDBG_FACILITY RPCDBG_SCHED
static int rpc_task_id = 0;
#endif
#define _S(signo) (1 << ((signo)-1))
/*
* We give RPC the same get_free_pages priority as NFS
*/
#define GFP_RPC GFP_NFS
static void __rpc_default_timer(struct rpc_task *task);
static void rpciod_killall(void);
/*
* When an asynchronous RPC task is activated within a bottom half
* handler, or while executing another RPC task, it is put on
* schedq, and rpciod is woken up.
*/
static struct rpc_wait_queue schedq = RPC_INIT_WAITQ("schedq");
/*
* RPC tasks that create another task (e.g. for contacting the portmapper)
* will wait on this queue for their child's completion
*/
static struct rpc_wait_queue childq = RPC_INIT_WAITQ("childq");
/*
* All RPC tasks are linked into this list
*/
static struct rpc_task * all_tasks = NULL;
/*
* rpciod-related stuff
*/
static struct wait_queue * rpciod_idle = NULL;
static struct wait_queue * rpciod_killer = NULL;
static int rpciod_sema = 0;
static pid_t rpciod_pid = 0;
static int rpc_inhibit = 0;
/*
* This is the last-ditch buffer for NFS swap requests
*/
static u32 swap_buffer[PAGE_SIZE >> 2];
static int swap_buffer_used = 0;
/*
* Add new request to wait queue.
*
* Swapper tasks always get inserted at the head of the queue.
* This should avoid many nasty memory deadlocks and hopefully
* improve overall performance.
* Everyone else gets appended to the queue to ensure proper FIFO behavior.
*/
void
rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
{
if (task->tk_rpcwait) {
if (task->tk_rpcwait != queue)
printk(KERN_WARNING "RPC: doubly enqueued task!\n");
return;
}
if (RPC_IS_SWAPPER(task))
rpc_insert_list(&queue->task, task);
else
rpc_append_list(&queue->task, task);
task->tk_rpcwait = queue;
dprintk("RPC: %4d added to queue %p \"%s\"\n",
task->tk_pid, queue, rpc_qname(queue));
}
/*
* Remove request from queue
*/
void
rpc_remove_wait_queue(struct rpc_task *task)
{
struct rpc_wait_queue *queue;
if (!(queue = task->tk_rpcwait))
return;
rpc_remove_list(&queue->task, task);
task->tk_rpcwait = NULL;
dprintk("RPC: %4d removed from queue %p \"%s\"\n",
task->tk_pid, queue, rpc_qname(queue));
}
/*
* Set up a timer for the current task.
*/
inline void
rpc_add_timer(struct rpc_task *task, rpc_action timer)
{
unsigned long expires = jiffies + task->tk_timeout;
dprintk("RPC: %4d setting alarm for %lu ms\n",
task->tk_pid, task->tk_timeout * 1000 / HZ);
if (!timer)
timer = __rpc_default_timer;
if (expires < jiffies) {
printk("RPC: bad timeout value %ld - setting to 10 sec!\n",
task->tk_timeout);
expires = jiffies + 10 * HZ;
}
task->tk_timer.expires = expires;
task->tk_timer.data = (unsigned long) task;
task->tk_timer.function = (void (*)(unsigned long)) timer;
task->tk_timer.prev = NULL;
task->tk_timer.next = NULL;
add_timer(&task->tk_timer);
}
/*
* Delete any timer for the current task.
* Must be called with interrupts off.
*/
inline void
rpc_del_timer(struct rpc_task *task)
{
if (task->tk_timeout) {
dprintk("RPC: %4d deleting timer\n", task->tk_pid);
del_timer(&task->tk_timer);
task->tk_timeout = 0;
}
}
/*
* Make an RPC task runnable.
*/
static inline void
rpc_make_runnable(struct rpc_task *task)
{
if (task->tk_timeout) {
printk("RPC: task w/ running timer in rpc_make_runnable!!\n");
return;
}
if (RPC_IS_ASYNC(task)) {
rpc_add_wait_queue(&schedq, task);
wake_up(&rpciod_idle);
} else {
wake_up(&task->tk_wait);
}
task->tk_flags |= RPC_TASK_RUNNING;
}
/*
* Prepare for sleeping on a wait queue.
* By always appending tasks to the list we ensure FIFO behavior.
* NB: An RPC task will only receive interrupt-driven events as long
* as it's on a wait queue.
*/
static void
__rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
rpc_action action, rpc_action timer)
{
unsigned long oldflags;
dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
rpc_qname(q), jiffies);
/*
* Protect the execution below.
*/
save_flags(oldflags); cli();
rpc_add_wait_queue(q, task);
task->tk_callback = action;
if (task->tk_timeout)
rpc_add_timer(task, timer);
task->tk_flags &= ~RPC_TASK_RUNNING;
restore_flags(oldflags);
return;
}
void
rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
rpc_action action, rpc_action timer)
{
__rpc_sleep_on(q, task, action, timer);
}
/*
* Wake up a single task -- must be invoked with bottom halves off.
*
* It would probably suffice to cli/sti the del_timer and remove_wait_queue
* operations individually.
*/
static void
__rpc_wake_up(struct rpc_task *task)
{
dprintk("RPC: %4d __rpc_wake_up (now %ld inh %d)\n",
task->tk_pid, jiffies, rpc_inhibit);
#ifdef RPC_DEBUG
if (task->tk_magic != 0xf00baa) {
printk("RPC: attempt to wake up non-existing task!\n");
rpc_debug = ~0;
return;
}
#endif
rpc_del_timer(task);
if (task->tk_rpcwait != &schedq)
rpc_remove_wait_queue(task);
if (!RPC_IS_RUNNING(task)) {
rpc_make_runnable(task);
task->tk_flags |= RPC_TASK_CALLBACK;
}
dprintk("RPC: __rpc_wake_up done\n");
}
/*
* Default timeout handler if none specified by user
*/
static void
__rpc_default_timer(struct rpc_task *task)
{
dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
task->tk_status = -ETIMEDOUT;
task->tk_timeout = 0;
__rpc_wake_up(task);
}
/*
* Wake up the specified task
*/
void
rpc_wake_up_task(struct rpc_task *task)
{
unsigned long oldflags;
save_flags(oldflags); cli();
__rpc_wake_up(task);
restore_flags(oldflags);
}
/*
* Wake up the next task on the wait queue.
*/
struct rpc_task *
rpc_wake_up_next(struct rpc_wait_queue *queue)
{
unsigned long oldflags;
struct rpc_task *task;
dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
save_flags(oldflags); cli();
if ((task = queue->task) != 0)
__rpc_wake_up(task);
restore_flags(oldflags);
return task;
}
/*
* Wake up all tasks on a queue
*/
void
rpc_wake_up(struct rpc_wait_queue *queue)
{
unsigned long oldflags;
save_flags(oldflags); cli();
while (queue->task)
__rpc_wake_up(queue->task);
restore_flags(oldflags);
}
/*
* Wake up all tasks on a queue, and set their status value.
*/
void
rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
{
struct rpc_task *task;
unsigned long oldflags;
save_flags(oldflags); cli();
while ((task = queue->task) != NULL) {
task->tk_status = status;
__rpc_wake_up(task);
}
restore_flags(oldflags);
}
/*
* Run a task at a later time
*/
static void __rpc_atrun(struct rpc_task *);
void
rpc_delay(struct rpc_task *task, unsigned long delay)
{
static struct rpc_wait_queue delay_queue;
task->tk_timeout = delay;
rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
}
static void
__rpc_atrun(struct rpc_task *task)
{
task->tk_status = 0;
__rpc_wake_up(task);
}
/*
* This is the RPC `scheduler' (or rather, the finite state machine).
*/
static int
__rpc_execute(struct rpc_task *task)
{
unsigned long oldflags;
int status = 0;
dprintk("RPC: %4d rpc_execute flgs %x\n",
task->tk_pid, task->tk_flags);
if (!RPC_IS_RUNNING(task)) {
printk("RPC: rpc_execute called for sleeping task!!\n");
return 0;
}
while (1) {
/*
* Execute any pending callback.
*/
if (task->tk_flags & RPC_TASK_CALLBACK) {
task->tk_flags &= ~RPC_TASK_CALLBACK;
if (task->tk_callback) {
task->tk_callback(task);
task->tk_callback = NULL;
}
}
/*
* No handler for next step means exit.
*/
if (!task->tk_action)
break;
/*
* Perform the next FSM step.
* tk_action may be NULL when the task has been killed
* by someone else.
*/
if (RPC_IS_RUNNING(task) && task->tk_action)
task->tk_action(task);
/*
* Check whether task is sleeping.
* Note that if the task may go to sleep in tk_action,
* and the RPC reply arrives before we get here, it will
* have state RUNNING, but will still be on schedq.
*/
save_flags(oldflags); cli();
if (RPC_IS_RUNNING(task)) {
if (task->tk_rpcwait == &schedq)
rpc_remove_wait_queue(task);
} else while (!RPC_IS_RUNNING(task)) {
if (RPC_IS_ASYNC(task)) {
restore_flags(oldflags);
return 0;
}
/* sync task: sleep here */
dprintk("RPC: %4d sync task going to sleep\n",
task->tk_pid);
current->timeout = 0;
sleep_on(&task->tk_wait);
/* When the task received a signal, remove from
* any queues etc, and make runnable again. */
if (signalled())
__rpc_wake_up(task);
dprintk("RPC: %4d sync task resuming\n",
task->tk_pid);
}
restore_flags(oldflags);
/*
* When a sync task receives a signal, it exits with
* -ERESTARTSYS. In order to catch any callbacks that
* clean up after sleeping on some queue, we don't
* break the loop here, but go around once more.
*/
if (0 && !RPC_IS_ASYNC(task) && signalled()) {
dprintk("RPC: %4d got signal (map %08lx)\n",
task->tk_pid,
current->signal & ~current->blocked);
rpc_exit(task, -ERESTARTSYS);
}
}
dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status);
if (task->tk_exit) {
status = task->tk_status;
task->tk_exit(task);
}
return status;
}
/*
* User-visible entry point to the scheduler.
* The recursion protection is for debugging. It should go away once
* the code has stabilized.
*/
void
rpc_execute(struct rpc_task *task)
{
static int executing = 0;
int incr = RPC_IS_ASYNC(task)? 1 : 0;
if (incr && (executing || rpc_inhibit)) {
printk("RPC: rpc_execute called recursively!\n");
return;
}
executing += incr;
__rpc_execute(task);
executing -= incr;
}
/*
* This is our own little scheduler for async RPC tasks.
*/
static void
__rpc_schedule(void)
{
struct rpc_task *task;
int count = 0;
unsigned long oldflags;
dprintk("RPC: rpc_schedule enter\n");
while (1) {
save_flags(oldflags); cli();
if (!(task = schedq.task))
break;
rpc_del_timer(task);
rpc_remove_wait_queue(task);
task->tk_flags |= RPC_TASK_RUNNING;
restore_flags(oldflags);
__rpc_execute(task);
if (++count >= 200) {
count = 0;
need_resched = 1;
}
if (need_resched)
schedule();
}
restore_flags(oldflags);
dprintk("RPC: rpc_schedule leave\n");
}
/*
* Allocate memory for RPC purpose.
*
* This is yet another tricky issue: For sync requests issued by
* a user process, we want to make kmalloc sleep if there isn't
* enough memory. Async requests should not sleep too excessively
* because that will block rpciod (but that's not dramatic when
* it's starved of memory anyway). Finally, swapout requests should
* never sleep at all, and should not trigger another swap_out
* request through kmalloc which would just increase memory contention.
*
* I hope the following gets it right, which gives async requests
* a slight advantage over sync requests (good for writeback, debatable
* for readahead):
*
* sync user requests: GFP_KERNEL
* async requests: GFP_RPC (== GFP_NFS)
* swap requests: GFP_ATOMIC (or new GFP_SWAPPER)
*/
void *
rpc_allocate(unsigned int flags, unsigned int size)
{
u32 *buffer;
int gfp;
if (flags & RPC_TASK_SWAPPER)
gfp = GFP_ATOMIC;
else if (flags & RPC_TASK_ASYNC)
gfp = GFP_RPC;
else
gfp = GFP_KERNEL;
do {
if ((buffer = (u32 *) kmalloc(size, gfp)) != NULL) {
dprintk("RPC: allocated buffer %p\n", buffer);
return buffer;
}
if ((flags & RPC_TASK_SWAPPER) && !swap_buffer_used++) {
dprintk("RPC: used last-ditch swap buffer\n");
return swap_buffer;
}
if (flags & RPC_TASK_ASYNC)
return NULL;
current->timeout = jiffies + (HZ >> 4);
schedule();
} while (!signalled());
return NULL;
}
void
rpc_free(void *buffer)
{
if (buffer != swap_buffer) {
kfree(buffer);
return;
}
swap_buffer_used = 0;
}
/*
* Creation and deletion of RPC task structures
*/
inline void
rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt,
rpc_action callback, int flags)
{
memset(task, 0, sizeof(*task));
task->tk_client = clnt;
task->tk_flags = RPC_TASK_RUNNING | flags;
task->tk_exit = callback;
if (current->uid != current->fsuid || current->gid != current->fsgid)
task->tk_flags |= RPC_TASK_SETUID;
/* Initialize retry counters */
task->tk_garb_retry = 2;
task->tk_cred_retry = 2;
task->tk_suid_retry = 1;
/* Add to global list of all tasks */
task->tk_next_task = all_tasks;
task->tk_prev_task = NULL;
if (all_tasks)
all_tasks->tk_prev_task = task;
all_tasks = task;
if (clnt)
clnt->cl_users++;
#ifdef RPC_DEBUG
task->tk_magic = 0xf00baa;
task->tk_pid = rpc_task_id++;
#endif
dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
current->pid);
}
struct rpc_task *
rpc_new_task(struct rpc_clnt *clnt, rpc_action callback, int flags)
{
struct rpc_task *task;
if (!(task = (struct rpc_task *) rpc_allocate(flags, sizeof(*task))))
return NULL;
rpc_init_task(task, clnt, callback, flags);
dprintk("RPC: %4d allocated task\n", task->tk_pid);
task->tk_flags |= RPC_TASK_DYNAMIC;
return task;
}
void
rpc_release_task(struct rpc_task *task)
{
struct rpc_task *next, *prev;
dprintk("RPC: %4d release task\n", task->tk_pid);
/* Remove from global task list */
prev = task->tk_prev_task;
next = task->tk_next_task;
if (next)
next->tk_prev_task = prev;
if (prev)
prev->tk_next_task = next;
else
all_tasks = next;
/* Release resources */
if (task->tk_rqstp)
xprt_release(task);
if (task->tk_cred)
rpcauth_releasecred(task);
if (task->tk_buffer) {
rpc_free(task->tk_buffer);
task->tk_buffer = NULL;
}
if (task->tk_client) {
rpc_release_client(task->tk_client);
task->tk_client = NULL;
}
#ifdef RPC_DEBUG
task->tk_magic = 0;
#endif
if (task->tk_flags & RPC_TASK_DYNAMIC) {
dprintk("RPC: %4d freeing task\n", task->tk_pid);
task->tk_flags &= ~RPC_TASK_DYNAMIC;
rpc_free(task);
}
}
/*
* Handling of RPC child tasks
* We can't simply call wake_up(parent) here, because the
* parent task may already have gone away
*/
static inline struct rpc_task *
rpc_find_parent(struct rpc_task *child)
{
struct rpc_task *temp, *parent;
parent = (struct rpc_task *) child->tk_calldata;
for (temp = childq.task; temp; temp = temp->tk_next) {
if (temp == parent)
return parent;
}
return NULL;
}
static void
rpc_child_exit(struct rpc_task *child)
{
struct rpc_task *parent;
if ((parent = rpc_find_parent(child)) != NULL) {
parent->tk_status = child->tk_status;
rpc_wake_up_task(parent);
}
rpc_release_task(child);
}
struct rpc_task *
rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
{
struct rpc_task *task;
if (!(task = rpc_new_task(clnt, NULL, RPC_TASK_ASYNC|RPC_TASK_CHILD))) {
parent->tk_status = -ENOMEM;
return NULL;
}
task->tk_exit = rpc_child_exit;
task->tk_calldata = parent;
return task;
}
void
rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
{
rpc_make_runnable(child);
rpc_sleep_on(&childq, task, func, NULL);
}
/*
* Kill all tasks for the given client.
* XXX: kill their descendants as well?
*/
void
rpc_killall_tasks(struct rpc_clnt *clnt)
{
struct rpc_task **q, *rovr;
dprintk("RPC: killing all tasks for client %p\n", clnt);
rpc_inhibit++;
for (q = &all_tasks; (rovr = *q); q = &rovr->tk_next_task) {
if (!clnt || rovr->tk_client == clnt) {
rovr->tk_flags |= RPC_TASK_KILLED;
rpc_exit(rovr, -EIO);
rpc_wake_up_task(rovr);
}
}
rpc_inhibit--;
}
/*
* This is the rpciod kernel thread
*/
static int
rpciod(void *ptr)
{
struct wait_queue **assassin = (struct wait_queue **) ptr;
unsigned long oldflags;
int rounds = 0;
lock_kernel();
rpciod_pid = current->pid;
MOD_INC_USE_COUNT;
/* exit_files(current); */
exit_mm(current);
current->blocked |= ~_S(SIGKILL);
current->session = 1;
current->pgrp = 1;
sprintf(current->comm, "rpciod");
dprintk("RPC: rpciod starting (pid %d)\n", rpciod_pid);
while (rpciod_sema) {
if (signalled()) {
if (current->signal & _S(SIGKILL)) {
rpciod_killall();
} else {
printk("rpciod: ignoring signal (%d users)\n",
rpciod_sema);
}
current->signal &= current->blocked;
}
__rpc_schedule();
if (++rounds >= 64) /* safeguard */
schedule();
save_flags(oldflags); cli();
if (!schedq.task) {
dprintk("RPC: rpciod back to sleep\n");
interruptible_sleep_on(&rpciod_idle);
dprintk("RPC: switch to rpciod\n");
}
restore_flags(oldflags);
}
dprintk("RPC: rpciod shutdown commences\n");
if (all_tasks) {
printk("rpciod: active tasks at shutdown?!\n");
rpciod_killall();
}
rpciod_pid = 0;
wake_up(assassin);
dprintk("RPC: rpciod exiting\n");
MOD_DEC_USE_COUNT;
return 0;
}
static void
rpciod_killall(void)
{
while (all_tasks) {
unsigned long oldsig = current->signal;
current->signal = 0;
rpc_killall_tasks(NULL);
__rpc_schedule();
current->timeout = jiffies + HZ / 100;
need_resched = 1;
schedule();
current->signal = oldsig;
}
}
void
rpciod_up(void)
{
dprintk("rpciod_up pid %d sema %d\n", rpciod_pid, rpciod_sema);
if (!(rpciod_sema++) || !rpciod_pid)
kernel_thread(rpciod, &rpciod_killer, 0);
}
void
rpciod_down(void)
{
dprintk("rpciod_down pid %d sema %d\n", rpciod_pid, rpciod_sema);
if (--rpciod_sema > 0)
return;
rpciod_sema = 0;
kill_proc(rpciod_pid, SIGKILL, 1);
while (rpciod_pid) {
if (signalled())
return;
interruptible_sleep_on(&rpciod_killer);
}
}
|