summaryrefslogtreecommitdiffstats
path: root/include/asm-i386/pgtable.h
diff options
context:
space:
mode:
authorRalf Baechle <ralf@linux-mips.org>2000-02-04 07:40:19 +0000
committerRalf Baechle <ralf@linux-mips.org>2000-02-04 07:40:19 +0000
commit33263fc5f9ac8e8cb2b22d06af3ce5ac1dd815e4 (patch)
tree2d1b86a40bef0958a68cf1a2eafbeb0667a70543 /include/asm-i386/pgtable.h
parent216f5f51aa02f8b113aa620ebc14a9631a217a00 (diff)
Merge with Linux 2.3.32.
Diffstat (limited to 'include/asm-i386/pgtable.h')
-rw-r--r--include/asm-i386/pgtable.h306
1 files changed, 29 insertions, 277 deletions
diff --git a/include/asm-i386/pgtable.h b/include/asm-i386/pgtable.h
index 9138abfc3..336c27c67 100644
--- a/include/asm-i386/pgtable.h
+++ b/include/asm-i386/pgtable.h
@@ -27,19 +27,6 @@ extern pgd_t swapper_pg_dir[1024];
#define flush_page_to_ram(page) do { } while (0)
#define flush_icache_range(start, end) do { } while (0)
-/*
- * TLB flushing:
- *
- * - flush_tlb() flushes the current mm struct TLBs
- * - flush_tlb_all() flushes all processes TLBs
- * - flush_tlb_mm(mm) flushes the specified mm context TLB's
- * - flush_tlb_page(vma, vmaddr) flushes one page
- * - flush_tlb_range(mm, start, end) flushes a range of pages
- *
- * ..but the i386 has somewhat limited tlb flushing capabilities,
- * and page-granular flushes are available only on i486 and up.
- */
-
#define __flush_tlb() \
do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)
@@ -49,65 +36,16 @@ do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3"
#define __flush_tlb_one(addr) \
__asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
#endif
-
-#ifndef __SMP__
-
-#define flush_tlb() __flush_tlb()
-#define flush_tlb_all() __flush_tlb()
-#define local_flush_tlb() __flush_tlb()
-
-static inline void flush_tlb_mm(struct mm_struct *mm)
-{
- if (mm == current->active_mm)
- __flush_tlb();
-}
-
-static inline void flush_tlb_page(struct vm_area_struct *vma,
- unsigned long addr)
-{
- if (vma->vm_mm == current->active_mm)
- __flush_tlb_one(addr);
-}
-
-static inline void flush_tlb_range(struct mm_struct *mm,
- unsigned long start, unsigned long end)
-{
- if (mm == current->active_mm)
- __flush_tlb();
-}
-
-#else
/*
- * We aren't very clever about this yet - SMP could certainly
- * avoid some global flushes..
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
*/
+extern unsigned long empty_zero_page[1024];
+#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
-#include <asm/smp.h>
-
-#define local_flush_tlb() \
- __flush_tlb()
-
-extern void flush_tlb_all(void);
-extern void flush_tlb_current_task(void);
-extern void flush_tlb_mm(struct mm_struct *);
-extern void flush_tlb_page(struct vm_area_struct *, unsigned long);
-
-#define flush_tlb() flush_tlb_current_task()
-
-static inline void flush_tlb_range(struct mm_struct * mm, unsigned long start, unsigned long end)
-{
- flush_tlb_mm(mm);
-}
-
-#endif
#endif /* !__ASSEMBLY__ */
-#define pgd_quicklist (current_cpu_data.pgd_quick)
-#define pmd_quicklist (current_cpu_data.pmd_quick)
-#define pte_quicklist (current_cpu_data.pte_quick)
-#define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
-
/*
* The Linux x86 paging architecture is 'compile-time dual-mode', it
* implements both the traditional 2-level x86 page tables and the
@@ -121,13 +59,6 @@ static inline void flush_tlb_range(struct mm_struct * mm, unsigned long start, u
#endif
#endif
-/*
- * Certain architectures need to do special things when PTEs
- * within a page table are directly modified. Thus, the following
- * hook is made available.
- */
-#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
-
#define __beep() asm("movb $0x3,%al; outb %al,$0x61")
#define PMD_SIZE (1UL << PMD_SHIFT)
@@ -221,13 +152,6 @@ static inline void flush_tlb_range(struct mm_struct * mm, unsigned long start, u
extern unsigned long pg0[1024];
/*
- * ZERO_PAGE is a global shared page that is always zero: used
- * for zero-mapped memory areas etc..
- */
-extern unsigned long empty_zero_page[1024];
-#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
-
-/*
* Handling allocation failures during page table setup.
*/
extern void __handle_bad_pmd(pmd_t * pmd);
@@ -235,19 +159,19 @@ extern void __handle_bad_pmd_kernel(pmd_t * pmd);
#define pte_none(x) (!pte_val(x))
#define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
-#define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
+#define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0)
#define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PAGE_SHIFT)))
#define pmd_none(x) (!pmd_val(x))
-#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
-#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
+#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
+#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
/*
* Permanent address of a page. Obviously must never be
* called on a highmem page.
*/
-#define page_address(page) ({ if (PageHighMem(page)) BUG(); PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT); })
+#define page_address(page) ({ if (!(page)->virtual) BUG(); (page)->virtual; })
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
#define pte_page(x) (mem_map+pte_pagenr(x))
@@ -261,37 +185,37 @@ extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
-extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
-extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
-extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
-extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
-extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
-extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
-extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
-extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
-extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
-extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
+extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
+extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
+extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
+extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
+extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; }
+extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
+extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
+extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
+extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
+extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
-extern inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
-{
- pte_t __pte;
-
- pte_val(__pte) = (page-mem_map)*(unsigned long long)PAGE_SIZE +
- pgprot_val(pgprot);
- return __pte;
-}
+#define mk_pte(page,pgprot) \
+({ \
+ pte_t __pte; \
+ \
+ set_pte(&__pte, __pte(((page)-mem_map) * \
+ (unsigned long long)PAGE_SIZE + pgprot_val(pgprot))); \
+ __pte; \
+})
/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) \
-({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
+({ pte_t __pte; set_pte(&__pte, __pte(physpage + pgprot_val(pgprot))); __pte; })
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
-{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
+{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
#define page_pte(page) page_pte_prot(page, __pgprot(0))
@@ -317,182 +241,10 @@ extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
__pte_offset(address))
/*
- * Allocate and free page tables. The xxx_kernel() versions are
- * used to allocate a kernel page table - this turns on ASN bits
- * if any.
- */
-
-extern __inline__ pgd_t *get_pgd_slow(void)
-{
- pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL);
-
- if (ret) {
-#if 0
- /*
- * On PAE allocating a whole page is overkill - we will
- * either embedd this in mm_struct, or do a SLAB cache.
- */
- memcpy(ret, swapper_pg_dir, PTRS_PER_PGD * sizeof(pgd_t));
-#endif
-#if CONFIG_X86_PAE
- int i;
- for (i = 0; i < USER_PTRS_PER_PGD; i++)
- __pgd_clear(ret + i);
-#else
- memset(ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
-#endif
- memcpy(ret + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
- }
- return ret;
-}
-
-extern __inline__ pgd_t *get_pgd_fast(void)
-{
- unsigned long *ret;
-
- if ((ret = pgd_quicklist) != NULL) {
- pgd_quicklist = (unsigned long *)(*ret);
- ret[0] = 0;
- pgtable_cache_size--;
- } else
- ret = (unsigned long *)get_pgd_slow();
- return (pgd_t *)ret;
-}
-
-extern __inline__ void free_pgd_fast(pgd_t *pgd)
-{
- *(unsigned long *)pgd = (unsigned long) pgd_quicklist;
- pgd_quicklist = (unsigned long *) pgd;
- pgtable_cache_size++;
-}
-
-extern __inline__ void free_pgd_slow(pgd_t *pgd)
-{
- free_page((unsigned long)pgd);
-}
-
-extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
-extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
-
-extern __inline__ pte_t *get_pte_fast(void)
-{
- unsigned long *ret;
-
- if((ret = (unsigned long *)pte_quicklist) != NULL) {
- pte_quicklist = (unsigned long *)(*ret);
- ret[0] = ret[1];
- pgtable_cache_size--;
- }
- return (pte_t *)ret;
-}
-
-extern __inline__ void free_pte_fast(pte_t *pte)
-{
- *(unsigned long *)pte = (unsigned long) pte_quicklist;
- pte_quicklist = (unsigned long *) pte;
- pgtable_cache_size++;
-}
-
-extern __inline__ void free_pte_slow(pte_t *pte)
-{
- free_page((unsigned long)pte);
-}
-
-#define pte_free_kernel(pte) free_pte_slow(pte)
-#define pte_free(pte) free_pte_slow(pte)
-#define pgd_free(pgd) free_pgd_slow(pgd)
-#define pgd_alloc() get_pgd_fast()
-
-extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
-{
- if (!pmd)
- BUG();
- address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
- if (pmd_none(*pmd)) {
- pte_t * page = (pte_t *) get_pte_fast();
-
- if (!page)
- return get_pte_kernel_slow(pmd, address);
- pmd_val(*pmd) = _KERNPG_TABLE + __pa(page);
- return page + address;
- }
- if (pmd_bad(*pmd)) {
- __handle_bad_pmd_kernel(pmd);
- return NULL;
- }
- return (pte_t *) pmd_page(*pmd) + address;
-}
-
-extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
-{
- address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
-
- if (pmd_none(*pmd))
- goto getnew;
- if (pmd_bad(*pmd))
- goto fix;
- return (pte_t *)pmd_page(*pmd) + address;
-getnew:
-{
- unsigned long page = (unsigned long) get_pte_fast();
-
- if (!page)
- return get_pte_slow(pmd, address);
- pmd_val(*pmd) = _PAGE_TABLE + __pa(page);
- return (pte_t *)page + address;
-}
-fix:
- __handle_bad_pmd(pmd);
- return NULL;
-}
-
-/*
- * allocating and freeing a pmd is trivial: the 1-entry pmd is
- * inside the pgd, so has no extra memory associated with it.
- * (In the PAE case we free the page.)
- */
-#define pmd_free(pmd) free_pmd_slow(pmd)
-
-#define pmd_free_kernel pmd_free
-#define pmd_alloc_kernel pmd_alloc
-
-extern int do_check_pgt_cache(int, int);
-
-extern inline void set_pgdir(unsigned long address, pgd_t entry)
-{
- struct task_struct * p;
- pgd_t *pgd;
-#ifdef __SMP__
- int i;
-#endif
-
- read_lock(&tasklist_lock);
- for_each_task(p) {
- if (!p->mm)
- continue;
- *pgd_offset(p->mm,address) = entry;
- }
- read_unlock(&tasklist_lock);
-#ifndef __SMP__
- for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
- pgd[address >> PGDIR_SHIFT] = entry;
-#else
- /* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can
- modify pgd caches of other CPUs as well. -jj */
- for (i = 0; i < NR_CPUS; i++)
- for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
- pgd[address >> PGDIR_SHIFT] = entry;
-#endif
-}
-
-/*
* The i386 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
-extern inline void update_mmu_cache(struct vm_area_struct * vma,
- unsigned long address, pte_t pte)
-{
-}
+#define update_mmu_cache(vma,address,pte) do { } while (0)
/* Encode and de-code a swap entry */
#define SWP_TYPE(x) (((x).val >> 1) & 0x3f)