summaryrefslogtreecommitdiffstats
path: root/include/asm-ia64/pgtable.h
diff options
context:
space:
mode:
authorRalf Baechle <ralf@linux-mips.org>2000-02-23 00:40:54 +0000
committerRalf Baechle <ralf@linux-mips.org>2000-02-23 00:40:54 +0000
commit529c593ece216e4aaffd36bd940cb94f1fa63129 (patch)
tree78f1c0b805f5656aa7b0417a043c5346f700a2cf /include/asm-ia64/pgtable.h
parent0bd079751d25808d1972baee5c4eaa1db2227257 (diff)
Merge with 2.3.43. I did ignore all modifications to the qlogicisp.c
driver due to the Origin A64 hacks.
Diffstat (limited to 'include/asm-ia64/pgtable.h')
-rw-r--r--include/asm-ia64/pgtable.h390
1 files changed, 390 insertions, 0 deletions
diff --git a/include/asm-ia64/pgtable.h b/include/asm-ia64/pgtable.h
new file mode 100644
index 000000000..2defe7cdf
--- /dev/null
+++ b/include/asm-ia64/pgtable.h
@@ -0,0 +1,390 @@
+#ifndef _ASM_IA64_PGTABLE_H
+#define _ASM_IA64_PGTABLE_H
+
+/*
+ * This file contains the functions and defines necessary to modify and use
+ * the ia-64 page table tree.
+ *
+ * This hopefully works with any (fixed) ia-64 page-size, as defined
+ * in <asm/page.h> (currently 8192).
+ *
+ * Copyright (C) 1998, 1999 Hewlett-Packard Co
+ * Copyright (C) 1998, 1999 David Mosberger-Tang <davidm@hpl.hp.com>
+ */
+
+#include <asm/mman.h>
+#include <asm/page.h>
+#include <asm/types.h>
+
+/* Size of physical address space: */
+#define IA64_PHYS_BITS 50 /* EAS2.5 defines 50 bits of ppn */
+#define IA64_PHYS_SIZE (__IA64_UL(1) << IA64_PHYS_BITS)
+
+/* Is ADDR a valid kernel address? */
+#define kern_addr_valid(addr) ((addr) >= TASK_SIZE)
+
+/* Is ADDR a valid physical address? */
+#define phys_addr_valid(addr) ((addr) < IA64_PHYS_SIZE)
+
+/*
+ * First, define the various bits in a PTE. Note that the PTE format
+ * matches the VHPT short format, the firt doubleword of the VHPD long
+ * format, and the first doubleword of the TLB insertion format.
+ */
+#define _PAGE_P (1 << 0) /* page present bit */
+#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
+#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
+#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
+#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
+#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
+#define _PAGE_MA_MASK (0x7 << 2)
+#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
+#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
+#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
+#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
+#define _PAGE_PL_MASK (3 << 7)
+#define _PAGE_AR_R (0 << 9) /* read only */
+#define _PAGE_AR_RX (1 << 9) /* read & execute */
+#define _PAGE_AR_RW (2 << 9) /* read & write */
+#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
+#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
+#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
+#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
+#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
+#define _PAGE_AR_MASK (7 << 9)
+#define _PAGE_AR_SHIFT 9
+#define _PAGE_A (1 << 5) /* page accessed bit */
+#define _PAGE_D (1 << 6) /* page dirty bit */
+#define _PAGE_PPN_MASK ((IA64_PHYS_SIZE - 1) & ~0xfffUL)
+#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
+#define _PAGE_PROTNONE (__IA64_UL(1) << 63)
+
+#define _PFN_MASK _PAGE_PPN_MASK
+#define _PAGE_CHG_MASK (_PFN_MASK | _PAGE_A | _PAGE_D)
+
+#define _PAGE_SIZE_4K 12
+#define _PAGE_SIZE_8K 13
+#define _PAGE_SIZE_16K 14
+#define _PAGE_SIZE_64K 16
+#define _PAGE_SIZE_256K 18
+#define _PAGE_SIZE_1M 20
+#define _PAGE_SIZE_4M 22
+#define _PAGE_SIZE_16M 24
+#define _PAGE_SIZE_64M 26
+#define _PAGE_SIZE_256M 28
+
+#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
+#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
+#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
+
+/*
+ * Definitions for first level:
+ *
+ * PGDIR_SHIFT determines what a first-level page table entry can map.
+ */
+#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
+#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+#define PTRS_PER_PGD (__IA64_UL(1) << (PAGE_SHIFT-3))
+#define USER_PTRS_PER_PGD PTRS_PER_PGD
+
+/*
+ * Definitions for second level:
+ *
+ * PMD_SHIFT determines the size of the area a second-level page table
+ * can map.
+ */
+#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
+#define PMD_SIZE (__IA64_UL(1) << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+#define PTRS_PER_PMD (__IA64_UL(1) << (PAGE_SHIFT-3))
+
+/*
+ * Definitions for third level:
+ */
+#define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3))
+
+/* Number of pointers that fit on a page: this will go away. */
+#define PTRS_PER_PAGE (__IA64_UL(1) << (PAGE_SHIFT-3))
+
+# ifndef __ASSEMBLY__
+
+#include <asm/bitops.h>
+#include <asm/mmu_context.h>
+#include <asm/processor.h>
+#include <asm/system.h>
+
+/*
+ * All the normal masks have the "page accessed" bits on, as any time
+ * they are used, the page is accessed. They are cleared only by the
+ * page-out routines
+ */
+#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
+#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
+#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
+#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
+#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
+#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RW)
+
+/*
+ * Next come the mappings that determine how mmap() protection bits
+ * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
+ * _P version gets used for a private shared memory segment, the _S
+ * version gets used for a shared memory segment with MAP_SHARED on.
+ * In a private shared memory segment, we do a copy-on-write if a task
+ * attempts to write to the page.
+ */
+ /* xwr */
+#define __P000 PAGE_NONE
+#define __P001 PAGE_READONLY
+#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
+#define __P011 PAGE_READONLY /* ditto */
+#define __P100 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_X_RX)
+#define __P101 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
+#define __P110 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
+#define __P111 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
+
+#define __S000 PAGE_NONE
+#define __S001 PAGE_READONLY
+#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
+#define __S011 PAGE_SHARED
+#define __S100 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_X_RX)
+#define __S101 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
+#define __S110 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RWX)
+#define __S111 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RWX)
+
+#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
+#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
+#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
+
+
+/*
+ * Some definitions to translate between mem_map, PTEs, and page
+ * addresses:
+ */
+
+/*
+ * Given a pointer to an mem_map[] entry, return the kernel virtual
+ * address corresponding to that page.
+ */
+#define page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
+
+/*
+ * Given a PTE, return the index of the mem_map[] entry corresponding
+ * to the page frame the PTE.
+ */
+#define pte_pagenr(x) ((unsigned long) ((pte_val(x) & _PFN_MASK) >> PAGE_SHIFT))
+
+/*
+ * Now for some cache flushing routines. This is the kind of stuff
+ * that can be very expensive, so try to avoid them whenever possible.
+ */
+
+/* Caches aren't brain-dead on the ia-64. */
+#define flush_cache_all() do { } while (0)
+#define flush_cache_mm(mm) do { } while (0)
+#define flush_cache_range(mm, start, end) do { } while (0)
+#define flush_cache_page(vma, vmaddr) do { } while (0)
+#define flush_page_to_ram(page) do { } while (0)
+#define flush_icache_range(start, end) do { } while (0)
+extern void ia64_flush_icache_page (unsigned long addr);
+
+#define flush_icache_page(pg) ia64_flush_icache_page(page_address(pg))
+
+/*
+ * Now come the defines and routines to manage and access the three-level
+ * page table.
+ */
+
+/*
+ * On some architectures, special things need to be done when setting
+ * the PTE in a page table. Nothing special needs to be on ia-64.
+ */
+#define set_pte(ptep, pteval) (*(ptep) = (pteval))
+
+#define VMALLOC_START (0xa000000000000000+2*PAGE_SIZE)
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+#define VMALLOC_END 0xbfffffffffffffff
+
+/*
+ * BAD_PAGETABLE is used when we need a bogus page-table, while
+ * BAD_PAGE is used for a bogus page.
+ *
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern pte_t ia64_bad_page (void);
+extern pmd_t *ia64_bad_pagetable (void);
+
+#define BAD_PAGETABLE ia64_bad_pagetable()
+#define BAD_PAGE ia64_bad_page()
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+#define mk_pte(page,pgprot) \
+({ \
+ pte_t __pte; \
+ \
+ pte_val(__pte) = ((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot); \
+ __pte; \
+})
+
+/* This takes a physical page address that is used by the remapping functions */
+#define mk_pte_phys(physpage, pgprot) \
+({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
+
+#define pte_modify(_pte, newprot) \
+ (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
+
+#define page_pte_prot(page,prot) mk_pte(page, prot)
+#define page_pte(page) page_pte_prot(page, __pgprot(0))
+
+#define pte_none(pte) (!pte_val(pte))
+#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
+#define pte_clear(pte) (pte_val(*(pte)) = 0UL)
+/* pte_page() returns the "struct page *" corresponding to the PTE: */
+#define pte_page(pte) (mem_map + pte_pagenr(pte))
+
+#define pmd_set(pmdp, ptep) (pmd_val(*(pmdp)) = __pa(ptep))
+#define pmd_none(pmd) (!pmd_val(pmd))
+#define pmd_bad(pmd) (!phys_addr_valid(pmd_val(pmd)))
+#define pmd_present(pmd) (pmd_val(pmd) != 0UL)
+#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
+#define pmd_page(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
+
+#define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = __pa(pmdp))
+#define pgd_none(pgd) (!pgd_val(pgd))
+#define pgd_bad(pgd) (!phys_addr_valid(pgd_val(pgd)))
+#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
+#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
+#define pgd_page(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
+
+/*
+ * The following have defined behavior only work if pte_present() is true.
+ */
+#define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6)
+#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) < 4)
+#define pte_dirty(pte) (pte_val(pte) & _PAGE_D)
+#define pte_young(pte) (pte_val(pte) & _PAGE_A)
+/*
+ * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the
+ * 2nd bit in the access rights:
+ */
+#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
+#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
+
+#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
+#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
+
+#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
+#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
+
+/*
+ * Macro to make mark a page protection value as "uncacheable". Note
+ * that "protection" is really a misnomer here as the protection value
+ * contains the memory attribute bits, dirty bits, and various other
+ * bits as well.
+ */
+#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
+
+/* The offset in the 1-level directory is given by the 3 region bits
+ (61..63) and the seven level-1 bits (33-39). */
+extern __inline__ pgd_t*
+pgd_offset (struct mm_struct *mm, unsigned long address)
+{
+ unsigned long region = address >> 61;
+ unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
+
+ return mm->pgd + ((region << (PAGE_SHIFT - 6)) | l1index);
+}
+
+/* In the kernel's mapped region we have a full 43 bit space available and completely
+ ignore the region number (since we know its in region number 5). */
+#define pgd_offset_k(addr) \
+ (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
+
+/* Find an entry in the second-level page table.. */
+#define pmd_offset(dir,addr) \
+ ((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
+
+/* Find an entry in the third-level page table.. */
+#define pte_offset(dir,addr) \
+ ((pte_t *) pmd_page(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
+
+
+extern void __handle_bad_pgd (pgd_t *pgd);
+extern void __handle_bad_pmd (pmd_t *pmd);
+
+
+extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
+
+/*
+ * IA-64 doesn't have any external MMU info: the page tables contain
+ * all the necessary information. However, we can use this macro
+ * to pre-install (override) a PTE that we know is needed anyhow.
+ *
+ * Asit says that on Itanium, it is generally faster to let the VHPT
+ * walker pick up a newly installed PTE (and VHPT misses should be
+ * extremely rare compared to normal misses). Also, since
+ * pre-installing the PTE has the problem that we may evict another
+ * TLB entry needlessly because we don't know for sure whether we need
+ * to update the iTLB or dTLB, I tend to prefer this solution, too.
+ * Also, this avoids nasty issues with forward progress (what if the
+ * newly installed PTE gets replaced before we return to the previous
+ * execution context?).
+ *
+ */
+#if 0
+# define update_mmu_cache(vma,address,pte)
+#else
+# define update_mmu_cache(vma,address,pte) \
+do { \
+ /* \
+ * XXX fix me!! \
+ * \
+ * It's not clear this is a win. We may end up pollute the \
+ * dtlb with itlb entries and vice versa (e.g., consider stack \
+ * pages that are normally marked executable). It would be \
+ * better to insert the TLB entry for the TLB cache that we \
+ * know needs the new entry. However, the update_mmu_cache() \
+ * arguments don't tell us whether we got here through a data \
+ * access or through an instruction fetch. Talk to Linus to \
+ * fix this. \
+ * \
+ * If you re-enable this code, you must disable the ptc code in \
+ * Entry 20 of the ivt. \
+ */ \
+ unsigned long flags; \
+ \
+ ia64_clear_ic(flags); \
+ ia64_itc((vma->vm_flags & PROT_EXEC) ? 0x3 : 0x2, address, pte_val(pte), PAGE_SHIFT); \
+ __restore_flags(flags); \
+} while (0)
+#endif
+
+#define SWP_TYPE(entry) (((entry).val >> 1) & 0xff)
+#define SWP_OFFSET(entry) ((entry).val >> 9)
+#define SWP_ENTRY(type,offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 9) })
+#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
+#define swp_entry_to_pte(x) ((pte_t) { (x).val })
+
+#define module_map vmalloc
+#define module_unmap vfree
+
+/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
+#define PageSkip(page) (0)
+
+#define io_remap_page_range remap_page_range /* XXX is this right? */
+
+/*
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern unsigned long empty_zero_page[1024];
+#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
+
+# endif /* !__ASSEMBLY__ */
+
+#endif /* _ASM_IA64_PGTABLE_H */