diff options
Diffstat (limited to 'arch/ia64/sn/io/l1.c')
-rw-r--r-- | arch/ia64/sn/io/l1.c | 2974 |
1 files changed, 2974 insertions, 0 deletions
diff --git a/arch/ia64/sn/io/l1.c b/arch/ia64/sn/io/l1.c new file mode 100644 index 000000000..b8c5af674 --- /dev/null +++ b/arch/ia64/sn/io/l1.c @@ -0,0 +1,2974 @@ +/* $Id$ + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000 Silicon Graphics, Inc. + * Copyright (C) 2000 by Colin Ngam + */ + +/* In general, this file is organized in a hierarchy from lower-level + * to higher-level layers, as follows: + * + * UART routines + * Bedrock/L1 "PPP-like" protocol implementation + * System controller "message" interface (allows multiplexing + * of various kinds of requests and responses with + * console I/O) + * Console interfaces (there are two): + * (1) "elscuart", used in the IP35prom and (maybe) some + * debugging situations elsewhere, and + * (2) "l1_cons", the glue that allows the L1 to act + * as the system console for the stdio libraries + * + * Routines making use of the system controller "message"-style interface + * can be found in l1_command.c. Their names are leftover from early SN0, + * when the "module system controller" (msc) was known as the "entry level + * system controller" (elsc). The names and signatures of those functions + * remain unchanged in order to keep the SN0 -> SN1 system controller + * changes fairly localized. + */ + + +#include <linux/types.h> +#include <linux/config.h> +#include <linux/slab.h> +#include <asm/sn/sgi.h> +#include <asm/sn/iograph.h> +#include <asm/sn/invent.h> +#include <asm/sn/hcl.h> +#include <asm/sn/hcl_util.h> +#include <asm/sn/labelcl.h> +#include <asm/sn/eeprom.h> +#include <asm/sn/ksys/i2c.h> +#include <asm/sn/cmn_err.h> +#include <asm/sn/router.h> +#include <asm/sn/module.h> +#include <asm/sn/ksys/l1.h> +#include <asm/sn/nodepda.h> +#include <asm/sn/clksupport.h> + +#include <asm/sn/sn1/uart16550.h> + + +#if defined(EEPROM_DEBUG) +#define db_printf(x) printk x +#else +#define db_printf(x) +#endif + +// From irix/kern/sys/SN/SN1/bdrkhspecregs.h +#define HSPEC_UART_0 0x00000080 /* UART Registers */ + +/********************************************************************* + * Hardware-level (UART) driver routines. + */ + +/* macros for reading/writing registers */ + +#define LD(x) (*(volatile uint64_t *)(x)) +#define SD(x, v) (LD(x) = (uint64_t) (v)) + +/* location of uart receive/xmit data register */ +#define L1_UART_BASE(n) ((ulong)REMOTE_HSPEC_ADDR((n), HSPEC_UART_0)) +#define LOCAL_HUB LOCAL_HUB_ADDR + +#define ADDR_L1_REG(n, r) \ + (L1_UART_BASE(n) | ( (r) << 3 )) + +#define READ_L1_UART_REG(n, r) \ + ( LD(ADDR_L1_REG((n), (r))) ) + +#define WRITE_L1_UART_REG(n, r, v) \ + ( SD(ADDR_L1_REG((n), (r)), (v)) ) + + +/* Avoid conflicts with symmon...*/ +#define CONS_HW_LOCK(x) +#define CONS_HW_UNLOCK(x) + +#define L1_CONS_HW_LOCK(sc) CONS_HW_LOCK(sc->uart == BRL1_LOCALUART) +#define L1_CONS_HW_UNLOCK(sc) CONS_HW_UNLOCK(sc->uart == BRL1_LOCALUART) + +#if DEBUG +static int debuglock_ospl; /* For CONS_HW_LOCK macro */ +#endif + +/* UART-related #defines */ + +#define UART_BAUD_RATE 57600 +#define UART_FIFO_DEPTH 16 +#define UART_DELAY_SPAN 10 +#define UART_PUTC_TIMEOUT 50000 +#define UART_INIT_TIMEOUT 100000 + +/* error codes */ +#define UART_SUCCESS 0 +#define UART_TIMEOUT (-1) +#define UART_LINK (-2) +#define UART_NO_CHAR (-3) +#define UART_VECTOR (-4) + +#ifdef BRINGUP +#define UART_DELAY(x) { int i; i = x * 1000; while (--i); } +#else +#define UART_DELAY(x) us_delay(x) +#endif + +/* + * Some macros for handling Endian-ness + */ + +#ifdef LITTLE_ENDIAN +#define COPY_INT_TO_BUFFER(_b, _i, _n) \ + { \ + _b[_i++] = (_n >> 24) & 0xff; \ + _b[_i++] = (_n >> 16) & 0xff; \ + _b[_i++] = (_n >> 8) & 0xff; \ + _b[_i++] = _n & 0xff; \ + } + +#define COPY_BUFFER_TO_INT(_b, _i, _n) \ + { \ + _n = (_b[_i++] << 24) & 0xff; \ + _n |= (_b[_i++] << 16) & 0xff; \ + _n |= (_b[_i++] << 8) & 0xff; \ + _n |= _b[_i++] & 0xff; \ + } + +#define COPY_BUFFER_TO_BUFFER(_b, _i, _bn) \ + { \ + char *_xyz = (char *)_bn; \ + _xyz[3] = _b[_i++]; \ + _xyz[2] = _b[_i++]; \ + _xyz[1] = _b[_i++]; \ + _xyz[0] = _b[_i++]; \ + } +#else /* BIG_ENDIAN */ +#define COPY_INT_TO_BUFFER(_b, _i, _n) \ + { \ + bcopy((char *)&_n, _b, sizeof(_n)); \ + _i += sizeof(_n); \ + } + +#define COPY_BUFFER_TO_INT(_b, _i, _n) \ + { \ + bcopy(&_b[_i], &_n, sizeof(_n)); \ + _i += sizeof(_n); \ + } + +#define COPY_BUFFER_TO_BUFFER(_b, _i, _bn) \ + { \ + bcopy(&(_b[_i]), _bn, sizeof(int)); \ + _i += sizeof(int); \ + } +#endif /* LITTLE_ENDIAN */ + +int atomicAddInt(int *int_ptr, int value); +int atomicClearInt(int *int_ptr, int value); +void kmem_free(void *where, int size); + +#define BCOPY(x,y,z) memcpy(y,x,z) + +extern char *bcopy(const char * src, char * dest, int count); + + +int +get_L1_baud(void) +{ + return UART_BAUD_RATE; +} + + +/* uart driver functions */ + +static void +uart_delay( rtc_time_t delay_span ) +{ + UART_DELAY( delay_span ); +} + +#define UART_PUTC_READY(n) (READ_L1_UART_REG((n), REG_LSR) & LSR_XHRE) + +static int +uart_putc( l1sc_t *sc ) +{ +#ifdef BRINGUP + /* need a delay to avoid dropping chars */ + UART_DELAY(57); +#endif + WRITE_L1_UART_REG( sc->nasid, REG_DAT, + sc->send[sc->sent] ); + return UART_SUCCESS; +} + + +static int +uart_getc( l1sc_t *sc ) +{ + u_char lsr_reg = 0; + nasid_t nasid = sc->nasid; + + if( (lsr_reg = READ_L1_UART_REG( nasid, REG_LSR )) & + (LSR_RCA | LSR_PARERR | LSR_FRMERR) ) + { + if( lsr_reg & LSR_RCA ) + return( (u_char)READ_L1_UART_REG( nasid, REG_DAT ) ); + else if( lsr_reg & (LSR_PARERR | LSR_FRMERR) ) { + return UART_LINK; + } + } + + return UART_NO_CHAR; +} + + +#define PROM_SER_CLK_SPEED 12000000 +#define PROM_SER_DIVISOR(x) (PROM_SER_CLK_SPEED / ((x) * 16)) + +static void +uart_init( l1sc_t *sc, int baud ) +{ + rtc_time_t expire; + int clkdiv; + nasid_t nasid; + + clkdiv = PROM_SER_DIVISOR(baud); + expire = rtc_time() + UART_INIT_TIMEOUT; + nasid = sc->nasid; + + /* make sure the transmit FIFO is empty */ + while( !(READ_L1_UART_REG( nasid, REG_LSR ) & LSR_XSRE) ) { + uart_delay( UART_DELAY_SPAN ); + if( rtc_time() > expire ) { + break; + } + } + + L1_CONS_HW_LOCK( sc ); + + WRITE_L1_UART_REG( nasid, REG_LCR, LCR_DLAB ); + uart_delay( UART_DELAY_SPAN ); + WRITE_L1_UART_REG( nasid, REG_DLH, (clkdiv >> 8) & 0xff ); + uart_delay( UART_DELAY_SPAN ); + WRITE_L1_UART_REG( nasid, REG_DLL, clkdiv & 0xff ); + uart_delay( UART_DELAY_SPAN ); + + /* set operating parameters and set DLAB to 0 */ + WRITE_L1_UART_REG( nasid, REG_LCR, LCR_BITS8 | LCR_STOP1 ); + uart_delay( UART_DELAY_SPAN ); + WRITE_L1_UART_REG( nasid, REG_MCR, MCR_RTS | MCR_AFE ); + uart_delay( UART_DELAY_SPAN ); + + /* disable interrupts */ + WRITE_L1_UART_REG( nasid, REG_ICR, 0x0 ); + uart_delay( UART_DELAY_SPAN ); + + /* enable FIFO mode and reset both FIFOs */ + WRITE_L1_UART_REG( nasid, REG_FCR, FCR_FIFOEN ); + uart_delay( UART_DELAY_SPAN ); + WRITE_L1_UART_REG( nasid, REG_FCR, + FCR_FIFOEN | FCR_RxFIFO | FCR_TxFIFO ); + + L1_CONS_HW_UNLOCK( sc ); +} + +static void +uart_intr_enable( l1sc_t *sc, u_char mask ) +{ + u_char lcr_reg, icr_reg; + nasid_t nasid = sc->nasid; + + L1_CONS_HW_LOCK(sc); + + /* make sure that the DLAB bit in the LCR register is 0 + */ + lcr_reg = READ_L1_UART_REG( nasid, REG_LCR ); + lcr_reg &= ~(LCR_DLAB); + WRITE_L1_UART_REG( nasid, REG_LCR, lcr_reg ); + + /* enable indicated interrupts + */ + icr_reg = READ_L1_UART_REG( nasid, REG_ICR ); + icr_reg |= mask; + WRITE_L1_UART_REG( nasid, REG_ICR, icr_reg /*(ICR_RIEN | ICR_TIEN)*/ ); + + L1_CONS_HW_UNLOCK(sc); +} + +static void +uart_intr_disable( l1sc_t *sc, u_char mask ) +{ + u_char lcr_reg, icr_reg; + nasid_t nasid = sc->nasid; + + L1_CONS_HW_LOCK(sc); + + /* make sure that the DLAB bit in the LCR register is 0 + */ + lcr_reg = READ_L1_UART_REG( nasid, REG_LCR ); + lcr_reg &= ~(LCR_DLAB); + WRITE_L1_UART_REG( nasid, REG_LCR, lcr_reg ); + + /* enable indicated interrupts + */ + icr_reg = READ_L1_UART_REG( nasid, REG_ICR ); + icr_reg &= mask; + WRITE_L1_UART_REG( nasid, REG_ICR, icr_reg /*(ICR_RIEN | ICR_TIEN)*/ ); + + L1_CONS_HW_UNLOCK(sc); +} + +#define uart_enable_xmit_intr(sc) \ + uart_intr_enable((sc), ICR_TIEN) + +#define uart_disable_xmit_intr(sc) \ + uart_intr_disable((sc), ~(ICR_TIEN)) + +#define uart_enable_recv_intr(sc) \ + uart_intr_enable((sc), ICR_RIEN) + +#define uart_disable_recv_intr(sc) \ + uart_intr_disable((sc), ~(ICR_RIEN)) + + +/********************************************************************* + * Routines for accessing a remote (router) UART + */ + +#define READ_RTR_L1_UART_REG(p, n, r, v) \ + { \ + if( vector_read_node( (p), (n), 0, \ + RR_JBUS1(r), (v) ) ) { \ + return UART_VECTOR; \ + } \ + } + +#define WRITE_RTR_L1_UART_REG(p, n, r, v) \ + { \ + if( vector_write_node( (p), (n), 0, \ + RR_JBUS1(r), (v) ) ) { \ + return UART_VECTOR; \ + } \ + } + +#ifdef SABLE +#define RTR_UART_PUTC_TIMEOUT 0 +#define RTR_UART_DELAY_SPAN 0 +#define RTR_UART_INIT_TIMEOUT 0 +#else +#define RTR_UART_PUTC_TIMEOUT UART_PUTC_TIMEOUT*10 +#define RTR_UART_DELAY_SPAN UART_DELAY_SPAN +#define RTR_UART_INIT_TIMEOUT UART_INIT_TIMEOUT*10 +#endif + +static int +rtr_uart_putc( l1sc_t *sc ) +{ + uint64_t regval, c; + nasid_t nasid = sc->nasid; + net_vec_t path = sc->uart; + rtc_time_t expire = rtc_time() + RTR_UART_PUTC_TIMEOUT; + + c = (sc->send[sc->sent] & 0xffULL); + + while( 1 ) + { + /* Check for "tx hold reg empty" bit. */ + READ_RTR_L1_UART_REG( path, nasid, REG_LSR, ®val ); + if( regval & LSR_XHRE ) + { + WRITE_RTR_L1_UART_REG( path, nasid, REG_DAT, c ); + return UART_SUCCESS; + } + + if( rtc_time() >= expire ) + { + return UART_TIMEOUT; + } + uart_delay( RTR_UART_DELAY_SPAN ); + } +} + + +static int +rtr_uart_getc( l1sc_t *sc ) +{ + uint64_t regval; + nasid_t nasid = sc->nasid; + net_vec_t path = sc->uart; + + READ_RTR_L1_UART_REG( path, nasid, REG_LSR, ®val ); + if( regval & (LSR_RCA | LSR_PARERR | LSR_FRMERR) ) + { + if( regval & LSR_RCA ) + { + READ_RTR_L1_UART_REG( path, nasid, REG_DAT, ®val ); + return( (int)regval ); + } + else + { + return UART_LINK; + } + } + + return UART_NO_CHAR; +} + + +static int +rtr_uart_init( l1sc_t *sc, int baud ) +{ + rtc_time_t expire; + int clkdiv; + nasid_t nasid; + net_vec_t path; + uint64_t regval; + + clkdiv = PROM_SER_DIVISOR(baud); + expire = rtc_time() + RTR_UART_INIT_TIMEOUT; + nasid = sc->nasid; + path = sc->uart; + + /* make sure the transmit FIFO is empty */ + while(1) { + READ_RTR_L1_UART_REG( path, nasid, REG_LSR, ®val ); + if( regval & LSR_XSRE ) { + break; + } + if( rtc_time() > expire ) { + break; + } + uart_delay( RTR_UART_DELAY_SPAN ); + } + + WRITE_RTR_L1_UART_REG( path, nasid, REG_LCR, LCR_DLAB ); + uart_delay( UART_DELAY_SPAN ); + WRITE_RTR_L1_UART_REG( path, nasid, REG_DLH, (clkdiv >> 8) & 0xff ); + uart_delay( UART_DELAY_SPAN ); + WRITE_RTR_L1_UART_REG( path, nasid, REG_DLL, clkdiv & 0xff ); + uart_delay( UART_DELAY_SPAN ); + + /* set operating parameters and set DLAB to 0 */ + WRITE_RTR_L1_UART_REG( path, nasid, REG_LCR, LCR_BITS8 | LCR_STOP1 ); + uart_delay( UART_DELAY_SPAN ); + WRITE_RTR_L1_UART_REG( path, nasid, REG_MCR, MCR_RTS | MCR_AFE ); + uart_delay( UART_DELAY_SPAN ); + + /* disable interrupts */ + WRITE_RTR_L1_UART_REG( path, nasid, REG_ICR, 0x0 ); + uart_delay( UART_DELAY_SPAN ); + + /* enable FIFO mode and reset both FIFOs */ + WRITE_RTR_L1_UART_REG( path, nasid, REG_FCR, FCR_FIFOEN ); + uart_delay( UART_DELAY_SPAN ); + WRITE_RTR_L1_UART_REG( path, nasid, REG_FCR, + FCR_FIFOEN | FCR_RxFIFO | FCR_TxFIFO ); + + return 0; +} + + + +/********************************************************************* + * locking macros + */ + +#define L1SC_SEND_LOCK(l,pl) \ + { if( (l)->uart == BRL1_LOCALUART ) \ + (pl) = mutex_spinlock_spl( &((l)->send_lock), spl7 ); } + +#define L1SC_SEND_UNLOCK(l,pl) \ + { if( (l)->uart == BRL1_LOCALUART ) \ + mutex_spinunlock( &((l)->send_lock), (pl)); } + +#define L1SC_RECV_LOCK(l,pl) \ + { if( (l)->uart == BRL1_LOCALUART ) \ + (pl) = mutex_spinlock_spl( &((l)->recv_lock), spl7 ); } + +#define L1SC_RECV_UNLOCK(l,pl) \ + { if( (l)->uart == BRL1_LOCALUART ) \ + mutex_spinunlock( &((l)->recv_lock), (pl)); } + + +/********************************************************************* + * subchannel manipulation + * + * The SUBCH_[UN]LOCK macros are used to arbitrate subchannel + * allocation. SUBCH_DATA_[UN]LOCK control access to data structures + * associated with particular subchannels (e.g., receive queues). + * + */ + + +#ifdef SPINLOCKS_WORK +#define SUBCH_LOCK(sc,pl) \ + (pl) = mutex_spinlock_spl( &((sc)->subch_lock), spl7 ) +#define SUBCH_UNLOCK(sc,pl) \ + mutex_spinunlock( &((sc)->subch_lock), (pl) ) + +#define SUBCH_DATA_LOCK(sbch,pl) \ + (pl) = mutex_spinlock_spl( &((sbch)->data_lock), spl7 ) +#define SUBCH_DATA_UNLOCK(sbch,pl) \ + mutex_spinunlock( &((sbch)->data_lock), (pl) ) +#else +#define SUBCH_LOCK(sc,pl) +#define SUBCH_UNLOCK(sc,pl) +#define SUBCH_DATA_LOCK(sbch,pl) +#define SUBCH_DATA_UNLOCK(sbch,pl) +#endif /* SPINLOCKS_WORK */ + +/* + * set a function to be called for subchannel ch in the event of + * a transmission low-water interrupt from the uart + */ +void +subch_set_tx_notify( l1sc_t *sc, int ch, brl1_notif_t func ) +{ + int pl; + L1SC_SEND_LOCK( sc, pl ); + sc->subch[ch].tx_notify = func; + + /* some upper layer is asking to be notified of low-water, but if the + * send buffer isn't already in use, we're going to need to get the + * interrupts going on the uart... + */ + if( func && !sc->send_in_use ) + uart_enable_xmit_intr( sc ); + L1SC_SEND_UNLOCK(sc, pl ); +} + +/* + * set a function to be called for subchannel ch when data is received + */ +void +subch_set_rx_notify( l1sc_t *sc, int ch, brl1_notif_t func ) +{ +#ifdef SPINLOCKS_WORK + int pl; +#endif + brl1_sch_t *subch = &(sc->subch[ch]); + + SUBCH_DATA_LOCK( subch, pl ); + sc->subch[ch].rx_notify = func; + SUBCH_DATA_UNLOCK( subch, pl ); +} + + + +/* get_myid is an internal function that reads the PI_CPU_NUM + * register of the local bedrock to determine which of the + * four possible CPU's "this" one is + */ +static int +get_myid( void ) +{ + return( LD(LOCAL_HUB(PI_CPU_NUM)) ); +} + + + +/********************************************************************* + * Queue manipulation macros + * + * + */ +#define NEXT(p) (((p) + 1) & (BRL1_QSIZE-1)) /* assume power of 2 */ + +#define cq_init(q) bzero((q), sizeof (*(q))) +#define cq_empty(q) ((q)->ipos == (q)->opos) +#define cq_full(q) (NEXT((q)->ipos) == (q)->opos) +#define cq_used(q) ((q)->opos <= (q)->ipos ? \ + (q)->ipos - (q)->opos : \ + BRL1_QSIZE + (q)->ipos - (q)->opos) +#define cq_room(q) ((q)->opos <= (q)->ipos ? \ + BRL1_QSIZE - 1 + (q)->opos - (q)->ipos : \ + (q)->opos - (q)->ipos - 1) +#define cq_add(q, c) ((q)->buf[(q)->ipos] = (u_char) (c), \ + (q)->ipos = NEXT((q)->ipos)) +#define cq_rem(q, c) ((c) = (q)->buf[(q)->opos], \ + (q)->opos = NEXT((q)->opos)) +#define cq_discard(q) ((q)->opos = NEXT((q)->opos)) + +#define cq_tent_full(q) (NEXT((q)->tent_next) == (q)->opos) +#define cq_tent_len(q) ((q)->ipos <= (q)->tent_next ? \ + (q)->tent_next - (q)->ipos : \ + BRL1_QSIZE + (q)->tent_next - (q)->ipos) +#define cq_tent_add(q, c) \ + ((q)->buf[(q)->tent_next] = (u_char) (c), \ + (q)->tent_next = NEXT((q)->tent_next)) +#define cq_commit_tent(q) \ + ((q)->ipos = (q)->tent_next) +#define cq_discard_tent(q) \ + ((q)->tent_next = (q)->ipos) + + + + +/********************************************************************* + * CRC-16 (for checking bedrock/L1 packets). + * + * These are based on RFC 1662 ("PPP in HDLC-like framing"). + */ + +static unsigned short fcstab[256] = { + 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, + 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, + 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, + 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, + 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, + 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, + 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, + 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, + 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, + 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, + 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, + 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, + 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, + 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, + 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, + 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, + 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, + 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, + 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, + 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, + 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, + 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, + 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, + 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, + 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, + 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, + 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, + 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, + 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, + 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, + 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, + 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 +}; + +#define INIT_CRC 0xFFFF /* initial CRC value */ +#define GOOD_CRC 0xF0B8 /* "good" final CRC value */ + +static unsigned short crc16_calc( unsigned short crc, u_char c ) +{ + return( (crc >> 8) ^ fcstab[(crc ^ c) & 0xff] ); +} + + +/*********************************************************************** + * The following functions implement the PPP-like bedrock/L1 protocol + * layer. + * + */ + +#define BRL1_FLAG_CH 0x7e +#define BRL1_ESC_CH 0x7d +#define BRL1_XOR_CH 0x20 + +/* L1<->Bedrock packet types */ +#define BRL1_REQUEST 0x00 +#define BRL1_RESPONSE 0x20 +#define BRL1_EVENT 0x40 + +#define BRL1_PKT_TYPE_MASK 0xE0 +#define BRL1_SUBCH_MASK 0x1F + +#define PKT_TYPE(tsb) ((tsb) & BRL1_PKT_TYPE_MASK) +#define SUBCH(tsb) ((tsb) & BRL1_SUBCH_MASK) + +/* timeouts */ +#define BRL1_INIT_TIMEOUT 500000 + +extern l1sc_t * get_elsc( void ); + +/* + * brl1_discard_packet is a dummy "receive callback" used to get rid + * of packets we don't want + */ +void brl1_discard_packet( l1sc_t *sc, int ch ) +{ + int pl; + brl1_sch_t *subch = &sc->subch[ch]; + sc_cq_t *q = subch->iqp; + SUBCH_DATA_LOCK( subch, pl ); + q->opos = q->ipos; + atomicClearInt( &(subch->packet_arrived), ~((unsigned)0) ); + SUBCH_DATA_UNLOCK( subch, pl ); +} + + +/* + * brl1_send_chars sends the send buffer in the l1sc_t structure + * out through the uart. Assumes that the caller has locked the + * UART (or send buffer in the kernel). + * + * This routine doesn't block-- if you want it to, call it in + * a loop. + */ +static int +brl1_send_chars( l1sc_t *sc ) +{ + /* In the kernel, we track the depth of the C brick's UART's + * fifo in software, and only check if the UART is accepting + * characters when our count indicates that the fifo should + * be full. + * + * For remote (router) UARTs, and also for the local (C brick) + * UART in the prom, we check with the UART before sending every + * character. + */ + if( sc->uart == BRL1_LOCALUART ) + { + CONS_HW_LOCK(1); + if( !(sc->fifo_space) && UART_PUTC_READY( sc->nasid ) ) +// sc->fifo_space = UART_FIFO_DEPTH; + sc->fifo_space = 1000; + + while( (sc->sent < sc->send_len) && (sc->fifo_space) ) { + uart_putc( sc ); + sc->fifo_space--; + sc->sent++; + } + + CONS_HW_UNLOCK(1); + } + + else + + /* The following applies to all UARTs in the prom, and to remote + * (router) UARTs in the kernel... + */ + +#define TIMEOUT_RETRIES 30 + + { + int result; + int tries = 0; + + while( sc->sent < sc->send_len ) { + result = sc->putc_f( sc ); + if( result >= 0 ) { + (sc->sent)++; + continue; + } + if( result == UART_TIMEOUT ) { + tries++; + /* send this character in TIMEOUT_RETRIES... */ + if( tries < TIMEOUT_RETRIES ) { + continue; + } + /* ...or else... */ + else { + /* ...drop the packet. */ + sc->sent = sc->send_len; + return sc->send_len; + } + } + if( result < 0 ) { + return result; + } + } + } + + return sc->sent; +} + + +/* brl1_send formats up a packet and (at least begins to) send it + * to the uart. If the send buffer is in use when this routine obtains + * the lock, it will behave differently depending on the "wait" parameter. + * For wait == 0 (most I/O), it will return 0 (as in "zero bytes sent"), + * hopefully encouraging the caller to back off (unlock any high-level + * spinlocks) and allow the buffer some time to drain. For wait==1 (high- + * priority I/O along the lines of kernel error messages), we will flush + * the current contents of the send buffer and beat on the uart + * until our message has been completely transmitted. + */ + +int +brl1_send( l1sc_t *sc, char *msg, int len, u_char type_and_subch, int wait ) +{ + int pl; + int index; + int pkt_len = 0; + unsigned short crc = INIT_CRC; + char *send_ptr = sc->send; + + L1SC_SEND_LOCK(sc, pl); + + if( sc->send_in_use ) { + if( !wait ) { + L1SC_SEND_UNLOCK(sc, pl); + return 0; /* couldn't send anything; wait for buffer to drain */ + } + else { + /* buffer's in use, but we're synchronous I/O, so we're going + * to send whatever's in there right now and take the buffer + */ + while( sc->sent < sc->send_len ) + brl1_send_chars( sc ); + } + } + else { + sc->send_in_use = 1; + } + *send_ptr++ = BRL1_FLAG_CH; + *send_ptr++ = type_and_subch; + pkt_len += 2; + crc = crc16_calc( crc, type_and_subch ); + + /* limit number of characters accepted to max payload size */ + if( len > (BRL1_QSIZE - 1) ) + len = (BRL1_QSIZE - 1); + + /* copy in the message buffer (inserting PPP + * framing info where necessary) + */ + for( index = 0; index < len; index++ ) { + + switch( *msg ) { + + case BRL1_FLAG_CH: + *send_ptr++ = BRL1_ESC_CH; + *send_ptr++ = (*msg) ^ BRL1_XOR_CH; + pkt_len += 2; + break; + + case BRL1_ESC_CH: + *send_ptr++ = BRL1_ESC_CH; + *send_ptr++ = (*msg) ^ BRL1_XOR_CH; + pkt_len += 2; + break; + + default: + *send_ptr++ = *msg; + pkt_len++; + } + crc = crc16_calc( crc, *msg ); + msg++; + } + crc ^= 0xffff; + + for( index = 0; index < sizeof(crc); index++ ) { + char crc_char = (char)(crc & 0x00FF); + if( (crc_char == BRL1_ESC_CH) || (crc_char == BRL1_FLAG_CH) ) { + *send_ptr++ = BRL1_ESC_CH; + pkt_len++; + crc_char ^= BRL1_XOR_CH; + } + *send_ptr++ = crc_char; + pkt_len++; + crc >>= 8; + } + + *send_ptr++ = BRL1_FLAG_CH; + pkt_len++; + + sc->send_len = pkt_len; + sc->sent = 0; + + do { + brl1_send_chars( sc ); + } while( (sc->sent < sc->send_len) && wait ); + + if( sc->sent == sc->send_len ) { + /* success! release the send buffer */ + sc->send_in_use = 0; + } + else if( !wait ) { + /* enable low-water interrupts so buffer will be drained */ + uart_enable_xmit_intr(sc); + } + L1SC_SEND_UNLOCK(sc, pl); + return len; +} + + +/* brl1_send_cont is intended to be called as an interrupt service + * routine. It sends until the UART won't accept any more characters, + * or until an error is encountered (in which case we surrender the + * send buffer and give up trying to send the packet). Once the + * last character in the packet has been sent, this routine releases + * the send buffer and calls any previously-registered "low-water" + * output routines. + */ +int +brl1_send_cont( l1sc_t *sc ) +{ + int pl; + int done = 0; + brl1_notif_t callups[BRL1_NUM_SUBCHANS]; + brl1_notif_t *callup; + brl1_sch_t *subch; + int index; + + L1SC_SEND_LOCK(sc, pl); + brl1_send_chars( sc ); + done = (sc->sent == sc->send_len); + if( done ) { + + sc->send_in_use = 0; + uart_disable_xmit_intr(sc); + + /* collect pointers to callups *before* unlocking */ + subch = sc->subch; + callup = callups; + for( index = 0; index < BRL1_NUM_SUBCHANS; index++ ) { + *callup = subch->tx_notify; + subch++; + callup++; + } + } + L1SC_SEND_UNLOCK(sc, pl); + + if( done ) { + /* call any upper layer that's asked for low-water notification */ + callup = callups; + for( index = 0; index < BRL1_NUM_SUBCHANS; index++ ) { + if( *callup ) + (*(*callup))( sc, index ); + callup++; + } + } + return 0; +} + + +/* internal function -- used by brl1_receive to read a character + * from the uart and check whether errors occurred in the process. + */ +static int +read_uart( l1sc_t *sc, int *c, int *result ) +{ + *c = sc->getc_f( sc ); + + /* no character is available */ + if( *c == UART_NO_CHAR ) { + *result = BRL1_NO_MESSAGE; + return 0; + } + + /* some error in UART */ + if( *c < 0 ) { + *result = BRL1_LINK; + return 0; + } + + /* everything's fine */ + *result = BRL1_VALID; + return 1; +} + + +/* + * brl1_receive + * + * This function reads a Bedrock-L1 protocol packet into the l1sc_t + * response buffer. + * + * The operation of this function can be expressed as a finite state + * machine: + * + +START STATE INPUT TRANSITION +========================================================== +BRL1_IDLE (reset or error) flag BRL1_FLAG + other BRL1_IDLE@ + +BRL1_FLAG (saw a flag (0x7e)) flag BRL1_FLAG + escape BRL1_IDLE@ + header byte BRL1_HDR + other BRL1_IDLE@ + +BRL1_HDR (saw a type/subch byte)(see below) BRL1_BODY + BRL1_HDR + +BRL1_BODY (reading packet body) flag BRL1_FLAG + escape BRL1_ESC + other BRL1_BODY + +BRL1_ESC (saw an escape (0x7d)) flag BRL1_FLAG@ + escape BRL1_IDLE@ + other BRL1_BODY +========================================================== + +"@" denotes an error transition. + + * The BRL1_HDR state is a transient state which doesn't read input, + * but just provides a way in to code which decides to whom an + * incoming packet should be directed. + * + * brl1_receive can be used to poll for input from the L1, or as + * an interrupt service routine. It reads as much data as is + * ready from the junk bus UART and places into the appropriate + * input queues according to subchannel. The header byte is + * stripped from console-type data, but is retained for message- + * type data (L1 responses). A length byte will also be + * prepended to message-type packets. + * + * This routine is non-blocking; if the caller needs to block + * for input, it must call brl1_receive in a loop. + * + * brl1_receive returns when there is no more input, the queue + * for the current incoming message is full, or there is an + * error (parity error, bad header, bad CRC, etc.). + */ + +#define STATE_SET(l,s) ((l)->brl1_state = (s)) +#define STATE_GET(l) ((l)->brl1_state) + +#define LAST_HDR_SET(l,h) ((l)->brl1_last_hdr = (h)) +#define LAST_HDR_GET(l) ((l)->brl1_last_hdr) + +#define SEQSTAMP_INCR(l) +#define SEQSTAMP_GET(l) + +#define VALID_HDR(c) \ + ( SUBCH((c)) <= SC_CONS_SYSTEM \ + ? PKT_TYPE((c)) == BRL1_REQUEST \ + : ( PKT_TYPE((c)) == BRL1_RESPONSE || \ + PKT_TYPE((c)) == BRL1_EVENT ) ) + +#define IS_TTY_PKT(l) \ + ( SUBCH(LAST_HDR_GET(l)) <= SC_CONS_SYSTEM ? 1 : 0 ) + + +int +brl1_receive( l1sc_t *sc ) +{ + int result; /* value to be returned by brl1_receive */ + int c; /* most-recently-read character */ + int pl; /* priority level for UART receive lock */ + int done; /* set done to break out of recv loop */ + sc_cq_t *q; /* pointer to queue we're working with */ + + result = BRL1_NO_MESSAGE; + + L1SC_RECV_LOCK( sc, pl ); + L1_CONS_HW_LOCK( sc ); + + done = 0; + while( !done ) + { + switch( STATE_GET(sc) ) + { + + case BRL1_IDLE: + /* Initial or error state. Waiting for a flag character + * to resynchronize with the L1. + */ + + if( !read_uart( sc, &c, &result ) ) { + + /* error reading uart */ + done = 1; + continue; + } + + if( c == BRL1_FLAG_CH ) { + /* saw a flag character */ + STATE_SET( sc, BRL1_FLAG ); + continue; + } + break; + + case BRL1_FLAG: + /* One or more flag characters have been read; look for + * the beginning of a packet (header byte). + */ + + if( !read_uart( sc, &c, &result ) ) { + + /* error reading uart */ + if( c != UART_NO_CHAR ) + STATE_SET( sc, BRL1_IDLE ); + + done = 1; + continue; + } + + if( c == BRL1_FLAG_CH ) { + /* multiple flags are OK */ + continue; + } + + if( !VALID_HDR( c ) ) { + /* if c isn't a flag it should have been + * a valid header, so we have an error + */ + result = BRL1_PROTOCOL; + STATE_SET( sc, BRL1_IDLE ); + done = 1; + continue; + } + + /* we have a valid header byte */ + LAST_HDR_SET( sc, c ); + STATE_SET( sc, BRL1_HDR ); + + break; + + case BRL1_HDR: + /* A header byte has been read. Do some bookkeeping. */ + q = sc->subch[ SUBCH( LAST_HDR_GET(sc) ) ].iqp; + ASSERT(q); + + if( !IS_TTY_PKT(sc) ) { + /* if this is an event or command response rather + * than console I/O, we need to reserve a couple + * of extra spaces in the queue for the header + * byte and a length byte; if we can't, stay in + * the BRL1_HDR state. + */ + if( cq_room( q ) < 2 ) { + result = BRL1_FULL_Q; + done = 1; + continue; + } + cq_tent_add( q, 0 ); /* reserve length byte */ + cq_tent_add( q, LAST_HDR_GET( sc ) ); /* record header byte */ + } + STATE_SET( sc, BRL1_BODY ); + + break; + + case BRL1_BODY: + /* A header byte has been read. We are now attempting + * to receive the packet body. + */ + + q = sc->subch[ SUBCH( LAST_HDR_GET(sc) ) ].iqp; + ASSERT(q); + + /* if the queue we want to write into is full, don't read from + * the uart (this provides backpressure to the L1 side) + */ + if( cq_tent_full( q ) ) { + result = BRL1_FULL_Q; + done = 1; + continue; + } + + if( !read_uart( sc, &c, &result ) ) { + + /* error reading uart */ + if( c != UART_NO_CHAR ) + STATE_SET( sc, BRL1_IDLE ); + done = 1; + continue; + } + + if( c == BRL1_ESC_CH ) { + /* prepare to unescape the next character */ + STATE_SET( sc, BRL1_ESC ); + continue; + } + + if( c == BRL1_FLAG_CH ) { + /* flag signifies the end of a packet */ + + unsigned short crc; /* holds the crc as we calculate it */ + int i; /* index variable */ + brl1_sch_t *subch; /* subchannel for received packet */ + int sch_pl; /* cookie for subchannel lock */ + brl1_notif_t callup; /* "data ready" callup */ + + /* whatever else may happen, we've seen a flag and we're + * starting a new packet + */ + STATE_SET( sc, BRL1_FLAG ); + SEQSTAMP_INCR(sc); /* bump the packet sequence counter */ + + /* if the packet body has less than 2 characters, + * it can't be a well-formed packet. Discard it. + */ + if( cq_tent_len( q ) < /* 2 + possible length byte */ + (2 + (IS_TTY_PKT(sc) ? 0 : 1)) ) + { + result = BRL1_PROTOCOL; + cq_discard_tent( q ); + STATE_SET( sc, BRL1_FLAG ); + done = 1; + continue; + } + + /* check CRC */ + + /* accumulate CRC, starting with the header byte and + * ending with the transmitted CRC. This should + * result in a known good value. + */ + crc = crc16_calc( INIT_CRC, LAST_HDR_GET(sc) ); + for( i = (q->ipos + (IS_TTY_PKT(sc) ? 0 : 2)) % BRL1_QSIZE; + i != q->tent_next; + i = (i + 1) % BRL1_QSIZE ) + { + crc = crc16_calc( crc, q->buf[i] ); + } + + /* verify the caclulated crc against the "good" crc value; + * if we fail, discard the bad packet and return an error. + */ + if( crc != (unsigned short)GOOD_CRC ) { + result = BRL1_CRC; + cq_discard_tent( q ); + STATE_SET( sc, BRL1_FLAG ); + done = 1; + continue; + } + + /* so the crc check was ok. Now we discard the CRC + * from the end of the received bytes. + */ + q->tent_next += (BRL1_QSIZE - 2); + q->tent_next %= BRL1_QSIZE; + + /* get the subchannel and lock it */ + subch = &(sc->subch[SUBCH( LAST_HDR_GET(sc) )]); + SUBCH_DATA_LOCK( subch, sch_pl ); + + /* if this isn't a console packet, we need to record + * a length byte + */ + if( !IS_TTY_PKT(sc) ) { + q->buf[q->ipos] = cq_tent_len( q ) - 1; + } + + /* record packet for posterity */ + cq_commit_tent( q ); + result = BRL1_VALID; + + /* notify subchannel owner that there's something + * on the queue for them + */ + atomicAddInt( &(subch->packet_arrived), 1); + callup = subch->rx_notify; + SUBCH_DATA_UNLOCK( subch, sch_pl ); + + if( callup ) { + L1_CONS_HW_UNLOCK( sc ); + L1SC_RECV_UNLOCK( sc, pl ); + (*callup)( sc, SUBCH(LAST_HDR_GET(sc)) ); + L1SC_RECV_LOCK( sc, pl ); + L1_CONS_HW_LOCK( sc ); + } + continue; /* go back for more! */ + } + + /* none of the special cases applied; we've got a normal + * body character + */ + cq_tent_add( q, c ); + + break; + + case BRL1_ESC: + /* saw an escape character. The next character will need + * to be unescaped. + */ + + q = sc->subch[ SUBCH( LAST_HDR_GET(sc) ) ].iqp; + ASSERT(q); + + /* if the queue we want to write into is full, don't read from + * the uart (this provides backpressure to the L1 side) + */ + if( cq_tent_full( q ) ) { + result = BRL1_FULL_Q; + done = 1; + continue; + } + + if( !read_uart( sc, &c, &result ) ) { + + /* error reading uart */ + if( c != UART_NO_CHAR ) { + cq_discard_tent( q ); + STATE_SET( sc, BRL1_IDLE ); + } + done = 1; + continue; + } + + if( c == BRL1_FLAG_CH ) { + /* flag after escape is an error */ + STATE_SET( sc, BRL1_FLAG ); + cq_discard_tent( q ); + result = BRL1_PROTOCOL; + done = 1; + continue; + } + + if( c == BRL1_ESC_CH ) { + /* two consecutive escapes is an error */ + STATE_SET( sc, BRL1_IDLE ); + cq_discard_tent( q ); + result = BRL1_PROTOCOL; + done = 1; + continue; + } + + /* otherwise, we've got a character that needs + * to be unescaped + */ + cq_tent_add( q, (c ^ BRL1_XOR_CH) ); + STATE_SET( sc, BRL1_BODY ); + + break; + + } /* end of switch( STATE_GET(sc) ) */ + } /* end of while(!done) */ + + L1_CONS_HW_UNLOCK( sc ); + L1SC_RECV_UNLOCK(sc, pl); + + return result; +} + + +/* brl1_init initializes the Bedrock/L1 protocol layer. This includes + * zeroing out the send and receive state information. + */ + +void +brl1_init( l1sc_t *sc, nasid_t nasid, net_vec_t uart ) +{ + int i; + brl1_sch_t *subch; + + bzero( sc, sizeof( *sc ) ); + sc->nasid = nasid; + sc->uart = uart; + sc->getc_f = (uart == BRL1_LOCALUART ? uart_getc : rtr_uart_getc); + sc->putc_f = (uart == BRL1_LOCALUART ? uart_putc : rtr_uart_putc); + sc->sol = 1; + subch = sc->subch; + + /* initialize L1 subchannels + */ + + /* assign processor TTY channels */ + for( i = 0; i < CPUS_PER_NODE; i++, subch++ ) { + subch->use = BRL1_SUBCH_RSVD; + subch->packet_arrived = 0; + spinlock_init( &(subch->data_lock), NULL ); + sv_init( &(subch->arrive_sv), SV_FIFO, NULL ); + subch->tx_notify = NULL; + /* (for now, drop elscuart packets in the kernel) */ + subch->rx_notify = brl1_discard_packet; + subch->iqp = &sc->garbage_q; + } + + /* assign system TTY channel (first free subchannel after each + * processor's individual TTY channel has been assigned) + */ + subch->use = BRL1_SUBCH_RSVD; + subch->packet_arrived = 0; + spinlock_init( &(subch->data_lock), NULL ); + sv_init( &(subch->arrive_sv), SV_FIFO, NULL ); + subch->tx_notify = NULL; + if( sc->uart == BRL1_LOCALUART ) { + subch->iqp = kmem_zalloc_node( sizeof(sc_cq_t), KM_NOSLEEP, + NASID_TO_COMPACT_NODEID(nasid) ); + ASSERT( subch->iqp ); + cq_init( subch->iqp ); + subch->rx_notify = NULL; + } + else { + /* we shouldn't be getting console input from remote UARTs */ + subch->iqp = &sc->garbage_q; + subch->rx_notify = brl1_discard_packet; + } + subch++; i++; + + /* "reserved" subchannels (0x05-0x0F); for now, throw away + * incoming packets + */ + for( ; i < 0x10; i++, subch++ ) { + subch->use = BRL1_SUBCH_FREE; + subch->packet_arrived = 0; + subch->tx_notify = NULL; + subch->rx_notify = brl1_discard_packet; + subch->iqp = &sc->garbage_q; + } + + /* remaining subchannels are free */ + for( ; i < BRL1_NUM_SUBCHANS; i++, subch++ ) { + subch->use = BRL1_SUBCH_FREE; + subch->packet_arrived = 0; + subch->tx_notify = NULL; + subch->rx_notify = brl1_discard_packet; + subch->iqp = &sc->garbage_q; + } + + /* initialize synchronization structures + */ + spinlock_init( &(sc->send_lock), NULL ); + spinlock_init( &(sc->recv_lock), NULL ); + spinlock_init( &(sc->subch_lock), NULL ); + + if( sc->uart == BRL1_LOCALUART ) { + uart_init( sc, UART_BAUD_RATE ); + } + else { + rtr_uart_init( sc, UART_BAUD_RATE ); + } + + /* Set up remaining fields using L1 command functions-- elsc_module_get + * to read the module id, elsc_debug_get to see whether or not we're + * in verbose mode. + */ + { + extern int elsc_module_get(l1sc_t *); + + sc->modid = elsc_module_get( sc ); + sc->modid = + (sc->modid < 0 ? INVALID_MODULE : sc->modid); + + sc->verbose = 1; + } +} + + +/********************************************************************* + * These are interrupt-related functions used in the kernel to service + * the L1. + */ + +/* + * brl1_intrd is the function which is called in a loop by the + * xthread that services L1 interrupts. + */ +#ifdef IRIX +void +brl1_intrd( struct eframe_s *ep ) +{ + u_char isr_reg; + l1sc_t *sc = get_elsc(); + + isr_reg = READ_L1_UART_REG(sc->nasid, REG_ISR); + + while( isr_reg & (ISR_RxRDY | ISR_TxRDY) ) { + + if( isr_reg & ISR_RxRDY ) { + brl1_receive(sc); + } + if( (isr_reg & ISR_TxRDY) || + (sc->send_in_use && UART_PUTC_READY(sc->nasid)) ) + { + brl1_send_cont(sc); + } + isr_reg = READ_L1_UART_REG(sc->nasid, REG_ISR); + } + + /* uart interrupts were blocked at bedrock when the the interrupt + * was initially answered; reenable them now + */ + intr_unblock_bit( sc->intr_cpu, UART_INTR ); + ep = ep; /* placate the compiler */ +} +#endif + + + +/* brl1_intr is called directly from the uart interrupt; after it runs, the + * interrupt "daemon" xthread is signalled to continue. + */ +#ifdef IRIX +void +brl1_intr( struct eframe_s *ep ) +{ + /* Disable the UART interrupt, giving the xthread time to respond. + * When the daemon (xthread) finishes doing its thing, it will + * unblock the interrupt. + */ + intr_block_bit( get_elsc()->intr_cpu, UART_INTR ); + ep = ep; /* placate the compiler */ +} + + +/* set up uart interrupt handling for this node's uart + */ +void +brl1_connect_intr( l1sc_t *sc ) +{ + cpuid_t last_cpu; + + sc->intr_cpu = nodepda->node_first_cpu; + + if( intr_connect_level(sc->intr_cpu, UART_INTR, INTPEND0_MAXMASK, + (intr_func_t)brl1_intrd, 0, + (intr_func_t)brl1_intr) ) + cmn_err(CE_PANIC, "brl1_connect_intr: Can't connect UART interrupt."); + + uart_enable_recv_intr( sc ); +} +#endif /* IRIX */ + +#ifdef SABLE +/* this function is called periodically to generate fake interrupts + * and allow brl1_intrd to send/receive characters + */ +void +hubuart_service( void ) +{ + l1sc_t *sc = get_elsc(); + /* note that we'll lose error state by reading the lsr_reg. + * This is probably ok in the frictionless domain of sable. + */ + int lsr_reg; + nasid_t nasid = sc->nasid; + lsr_reg = READ_L1_UART_REG( nasid, REG_LSR ); + if( lsr_reg & (LSR_RCA | LSR_XSRE) ) { + REMOTE_HUB_PI_SEND_INTR(0, 0, UART_INTR); + } +} +#endif /* SABLE */ + + +/********************************************************************* + * The following function allows the kernel to "go around" the + * uninitialized l1sc structure to allow console output during + * early system startup. + */ + +/* These are functions to use from serial_in/out when in protocol + * mode to send and receive uart control regs. + */ +void +brl1_send_control(int offset, int value) +{ + nasid_t nasid = get_nasid(); + WRITE_L1_UART_REG(nasid, offset, value); +} + +int +brl1_get_control(int offset) +{ + nasid_t nasid = get_nasid(); + return(READ_L1_UART_REG(nasid, offset)); +} + +#define PUTCHAR(ch) \ + { \ + while( !(READ_L1_UART_REG( nasid, REG_LSR ) & LSR_XHRE) ); \ + WRITE_L1_UART_REG( nasid, REG_DAT, (ch) ); \ + } + +int +brl1_send_console_packet( char *str, int len ) +{ + int sent = len; + char crc_char; + unsigned short crc = INIT_CRC; + nasid_t nasid = get_nasid(); + + PUTCHAR( BRL1_FLAG_CH ); + PUTCHAR( BRL1_EVENT | SC_CONS_SYSTEM ); + crc = crc16_calc( crc, (BRL1_EVENT | SC_CONS_SYSTEM) ); + + while( len ) { + + if( (*str == BRL1_FLAG_CH) || (*str == BRL1_ESC_CH) ) { + PUTCHAR( BRL1_ESC_CH ); + PUTCHAR( (*str) ^ BRL1_XOR_CH ); + } + else { + PUTCHAR( *str ); + } + + crc = crc16_calc( crc, *str ); + + str++; len--; + } + + crc ^= 0xffff; + crc_char = crc & 0xff; + if( (crc_char == BRL1_ESC_CH) || (crc_char == BRL1_FLAG_CH) ) { + crc_char ^= BRL1_XOR_CH; + PUTCHAR( BRL1_ESC_CH ); + } + PUTCHAR( crc_char ); + crc_char = (crc >> 8) & 0xff; + if( (crc_char == BRL1_ESC_CH) || (crc_char == BRL1_FLAG_CH) ) { + crc_char ^= BRL1_XOR_CH; + PUTCHAR( BRL1_ESC_CH ); + } + PUTCHAR( crc_char ); + PUTCHAR( BRL1_FLAG_CH ); + + return sent - len; +} + + +/********************************************************************* + * l1_cons functions + * + * These allow the L1 to act as the system console. They're intended + * to abstract away most of the br/l1 internal details from the + * _L1_cons_* functions (in the prom-- see "l1_console.c") and + * l1_* functions (in the kernel-- see "sio_l1.c") that they support. + * + */ + +int +l1_cons_poll( l1sc_t *sc ) +{ + /* in case this gets called before the l1sc_t structure for the module_t + * struct for this node is initialized (i.e., if we're called with a + * zero l1sc_t pointer)... + */ + if( !sc ) { + return 0; + } + + if( sc->subch[SC_CONS_SYSTEM].packet_arrived ) { + return 1; + } + + brl1_receive( sc ); + + if( sc->subch[SC_CONS_SYSTEM].packet_arrived ) { + return 1; + } + return 0; +} + + +/* pull a character off of the system console queue (if one is available) + */ +int +l1_cons_getc( l1sc_t *sc ) +{ + int c; +#ifdef SPINLOCKS_WORK + int pl; +#endif + brl1_sch_t *subch = &(sc->subch[SC_CONS_SYSTEM]); + sc_cq_t *q = subch->iqp; + + if( !l1_cons_poll( sc ) ) { + return 0; + } + + SUBCH_DATA_LOCK( subch, pl ); + if( cq_empty( q ) ) { + subch->packet_arrived = 0; + SUBCH_DATA_UNLOCK( subch, pl ); + return 0; + } + cq_rem( q, c ); + if( cq_empty( q ) ) + subch->packet_arrived = 0; + SUBCH_DATA_UNLOCK( subch, pl ); + + return c; +} + + +/* initialize the system console subchannel + */ +void +l1_cons_init( l1sc_t *sc ) +{ +#ifdef SPINLOCKS_WORK + int pl; +#endif + brl1_sch_t *subch = &(sc->subch[SC_CONS_SYSTEM]); + + SUBCH_DATA_LOCK( subch, pl ); + subch->packet_arrived = 0; + cq_init( subch->iqp ); + SUBCH_DATA_UNLOCK( subch, pl ); +} + + +/* + * Write a message to the L1 on the system console subchannel. + * + * Danger: don't use a non-zero value for the wait parameter unless you're + * someone important (like a kernel error message). + */ +int +l1_cons_write( l1sc_t *sc, char *msg, int len, int wait ) +{ + return( brl1_send( sc, msg, len, (SC_CONS_SYSTEM | BRL1_EVENT), wait ) ); +} + + +/* + * Read as many characters from the system console receive queue as are + * available there (up to avail bytes). + */ +int +l1_cons_read( l1sc_t *sc, char *buf, int avail ) +{ + int pl; + int before_wrap, after_wrap; + brl1_sch_t *subch = &(sc->subch[SC_CONS_SYSTEM]); + sc_cq_t *q = subch->iqp; + + if( !(subch->packet_arrived) ) + return 0; + + SUBCH_DATA_LOCK( subch, pl ); + if( q->opos > q->ipos ) { + before_wrap = BRL1_QSIZE - q->opos; + if( before_wrap >= avail ) { + before_wrap = avail; + after_wrap = 0; + } + else { + avail -= before_wrap; + after_wrap = q->ipos; + if( after_wrap > avail ) + after_wrap = avail; + } + } + else { + before_wrap = q->ipos - q->opos; + if( before_wrap > avail ) + before_wrap = avail; + after_wrap = 0; + } + + + BCOPY( q->buf + q->opos, buf, before_wrap ); + if( after_wrap ) + BCOPY( q->buf, buf + before_wrap, after_wrap ); + q->opos = ((q->opos + before_wrap + after_wrap) % BRL1_QSIZE); + + subch->packet_arrived = 0; + SUBCH_DATA_UNLOCK( subch, pl ); + + return( before_wrap + after_wrap ); +} + + +/* + * Install a callback function for the system console subchannel + * to allow an upper layer to be notified when the send buffer + * has been emptied. + */ +void +l1_cons_tx_notif( l1sc_t *sc, brl1_notif_t func ) +{ + subch_set_tx_notify( sc, SC_CONS_SYSTEM, func ); +} + + +/* + * Install a callback function for the system console subchannel + * to allow an upper layer to be notified when a packet has been + * received. + */ +void +l1_cons_rx_notif( l1sc_t *sc, brl1_notif_t func ) +{ + subch_set_rx_notify( sc, SC_CONS_SYSTEM, func ); +} + + + + +/********************************************************************* + * The following functions and definitions implement the "message"- + * style interface to the L1 system controller. + * + * Note that throughout this file, "sc" generally stands for "system + * controller", while "subchannels" tend to be represented by + * variables with names like subch or ch. + * + */ + +#ifdef L1_DEBUG +#define L1_DBG_PRF(x) printf x +#else +#define L1_DBG_PRF(x) +#endif + +/* sc_data_ready is called to signal threads that are blocked on + * l1 input. + */ +void +sc_data_ready( l1sc_t *sc, int ch ) +{ + brl1_sch_t *subch = &(sc->subch[ch]); + sv_signal( &(subch->arrive_sv) ); +} + +/* sc_open reserves a subchannel to send a request to the L1 (the + * L1's response will arrive on the same channel). The number + * returned by sc_open is the system controller subchannel + * acquired. + */ +int +sc_open( l1sc_t *sc, uint target ) +{ + /* The kernel version implements a locking scheme to arbitrate + * subchannel assignment. + */ + int ch; + int pl; + brl1_sch_t *subch; + + SUBCH_LOCK( sc, pl ); + + /* Look for a free subchannel. Subchannels 0-15 are reserved + * for other purposes. + */ + for( subch = &(sc->subch[BRL1_CMD_SUBCH]), ch = BRL1_CMD_SUBCH; + ch < BRL1_NUM_SUBCHANS; subch++, ch++ ) { + if( subch->use == BRL1_SUBCH_FREE ) + break; + } + + if( ch == BRL1_NUM_SUBCHANS ) { + /* there were no subchannels available! */ + SUBCH_UNLOCK( sc, pl ); + return SC_NSUBCH; + } + + subch->use = BRL1_SUBCH_RSVD; + SUBCH_UNLOCK( sc, pl ); + + subch->packet_arrived = 0; + subch->target = target; + sv_init( &(subch->arrive_sv), SV_FIFO, NULL ); + spinlock_init( &(subch->data_lock), NULL ); + subch->tx_notify = NULL; + subch->rx_notify = sc_data_ready; + subch->iqp = kmem_zalloc_node( sizeof(sc_cq_t), KM_NOSLEEP, + NASID_TO_COMPACT_NODEID(sc->nasid) ); + ASSERT( subch->iqp ); + cq_init( subch->iqp ); + + return ch; +} + + +/* sc_close frees a Bedrock<->L1 subchannel. + */ +int +sc_close( l1sc_t *sc, int ch ) +{ + brl1_sch_t *subch; + int pl; + + SUBCH_LOCK( sc, pl ); + subch = &(sc->subch[ch]); + if( subch->use != BRL1_SUBCH_RSVD ) { + /* we're trying to close a subchannel that's not open */ + return SC_NOPEN; + } + + subch->packet_arrived = 0; + subch->use = BRL1_SUBCH_FREE; + + sv_broadcast( &(subch->arrive_sv) ); + sv_destroy( &(subch->arrive_sv) ); + spinlock_destroy( &(subch->data_lock) ); + + ASSERT( subch->iqp && (subch->iqp != &sc->garbage_q) ); + kmem_free( subch->iqp, sizeof(sc_cq_t) ); + subch->iqp = &sc->garbage_q; + + SUBCH_UNLOCK( sc, pl ); + + return SC_SUCCESS; +} + + +/* sc_construct_msg builds a bedrock-to-L1 request in the supplied + * buffer. Returns the length of the message. The + * safest course when passing a buffer to be filled in is to use + * BRL1_QSIZE as the buffer size. + * + * Command arguments are passed as type/argument pairs, i.e., to + * pass the number 5 as an argument to an L1 command, call + * sc_construct_msg as follows: + * + * char msg[BRL1_QSIZE]; + * msg_len = sc_construct_msg( msg, + * BRL1_QSIZE, + * target_component, + * L1_ADDR_TASK_BOGUSTASK, + * L1_BOGUSTASK_REQ_BOGUSREQ, + * 2, + * L1_ARG_INT, 5 ); + * + * To pass an additional ASCII argument, you'd do the following: + * + * char *str; + * ... str points to a null-terminated ascii string ... + * msg_len = sc_construct_msg( msg, + * BRL1_QSIZE, + * target_component, + * L1_ADDR_TASK_BOGUSTASK, + * L1_BOGUSTASK_REQ_BOGUSREQ, + * 4, + * L1_ARG_INT, 5, + * L1_ARG_ASCII, str ); + * + * Finally, arbitrary data of unknown type is passed using the argtype + * code L1_ARG_UNKNOWN, a data length, and a buffer pointer, e.g. + * + * msg_len = sc_construct_msg( msg, + * BRL1_QSIZE, + * target_component, + * L1_ADDR_TASK_BOGUSTASK, + * L1_BOGUSTASK_REQ_BOGUSREQ, + * 3, + * L1_ARG_UNKNOWN, 32, bufptr ); + * + * ...passes 32 bytes of data starting at bufptr. Note that no string or + * "unknown"-type argument should be long enough to overflow the message + * buffer. + * + * To construct a message for an L1 command that requires no arguments, + * you'd use the following: + * + * msg_len = sc_construct_msg( msg, + * BRL1_QSIZE, + * target_component, + * L1_ADDR_TASK_BOGUSTASK, + * L1_BOGUSTASK_REQ_BOGUSREQ, + * 0 ); + * + * The final 0 means "no varargs". Notice that this parameter is used to hold + * the number of additional arguments to sc_construct_msg, _not_ the actual + * number of arguments used by the L1 command (so 2 per L1_ARG_[INT,ASCII] + * type argument, and 3 per L1_ARG_UNKOWN type argument). A call to construct + * an L1 command which required three integer arguments and two arguments of + * some arbitrary (unknown) type would pass 12 as the value for this parameter. + * + * ENDIANNESS WARNING: The following code does a lot of copying back-and-forth + * between byte arrays and four-byte big-endian integers. Depending on the + * system controller connection and endianness of future architectures, some + * rewriting might be necessary. + */ +int +sc_construct_msg( l1sc_t *sc, /* system controller struct */ + int ch, /* subchannel for this message */ + char *msg, /* message buffer */ + int msg_len, /* size of message buffer */ + l1addr_t addr_task, /* target system controller task */ + short req_code, /* 16-bit request code */ + int req_nargs, /* # of arguments (varargs) passed */ + ... ) /* any additional parameters */ +{ + uint32_t buf32; /* 32-bit buffer used to bounce things around */ + void *bufptr; /* used to hold command argument addresses */ + va_list al; /* variable argument list */ + int index; /* current index into msg buffer */ + int argno; /* current position in varargs list */ + int l1_argno; /* running total of arguments to l1 */ + int l1_arg_t; /* argument type/length */ + int l1_argno_byte; /* offset of argument count byte */ + + index = argno = 0; + + /* set up destination address */ + if( (msg_len -= sizeof( buf32 )) < 0 ) + return -1; + L1_ADDRESS_TO_TASK( &buf32, sc->subch[ch].target, addr_task ); + COPY_INT_TO_BUFFER(msg, index, buf32); + + /* copy request code */ + if( (msg_len -= 2) < 0 ) + return( -1 ); + msg[index++] = ((req_code >> 8) & 0xff); + msg[index++] = (req_code & 0xff); + + if( !req_nargs ) { + return index; + } + + /* reserve a byte for the argument count */ + if( (msg_len -= 1) < 0 ) + return( -1 ); + l1_argno_byte = index++; + l1_argno = 0; + + /* copy additional arguments */ + va_start( al, req_nargs ); + while( argno < req_nargs ) { + l1_argno++; + l1_arg_t = va_arg( al, int ); argno++; + switch( l1_arg_t ) + { + case L1_ARG_INT: + if( (msg_len -= (sizeof( buf32 ) + 1)) < 0 ) + return( -1 ); + msg[index++] = L1_ARG_INT; + buf32 = (unsigned)va_arg( al, int ); argno++; + COPY_INT_TO_BUFFER(msg, index, buf32); + break; + + case L1_ARG_ASCII: + bufptr = va_arg( al, char* ); argno++; + if( (msg_len -= (strlen( bufptr ) + 2)) < 0 ) + return( -1 ); + msg[index++] = L1_ARG_ASCII; + strcpy( (char *)&(msg[index]), (char *)bufptr ); + index += (strlen( bufptr ) + 1); /* include terminating null */ + break; + + case L1_ARG_UNKNOWN: + { + int arglen; + + arglen = va_arg( al, int ); argno++; + bufptr = va_arg( al, void* ); argno++; + if( (msg_len -= (arglen + 1)) < 0 ) + return( -1 ); + msg[index++] = L1_ARG_UNKNOWN | arglen; + BCOPY( bufptr, &(msg[index]), arglen ); + index += arglen; + break; + } + + default: /* unhandled argument type */ + return -1; + } + } + + va_end( al ); + msg[l1_argno_byte] = l1_argno; + + return index; +} + + + +/* sc_interpret_resp verifies an L1 response to a bedrock request, and + * breaks the response data up into the constituent parts. If the + * response message indicates error, or if a mismatch is found in the + * expected number and type of arguments, an error is returned. The + * arguments to this function work very much like the arguments to + * sc_construct_msg, above, except that L1_ARG_INTs must be followed + * by a _pointer_ to an integer that can be filled in by this function. + */ +int +sc_interpret_resp( char *resp, /* buffer received from L1 */ + int resp_nargs, /* number of _varargs_ passed in */ + ... ) +{ + uint32_t buf32; /* 32-bit buffer used to bounce things around */ + void *bufptr; /* used to hold response field addresses */ + va_list al; /* variable argument list */ + int index; /* current index into response buffer */ + int argno; /* current position in varargs list */ + int l1_fldno; /* number of resp fields received from l1 */ + int l1_fld_t; /* field type/length */ + + index = argno = 0; + +#if defined(L1_DEBUG) +#define DUMP_RESP \ + { \ + int ix; \ + char outbuf[512]; \ + sprintf( outbuf, "sc_interpret_resp error line %d: ", __LINE__ ); \ + for( ix = 0; ix < 16; ix++ ) { \ + sprintf( &outbuf[strlen(outbuf)], "%x ", resp[ix] ); \ + } \ + printk( "%s\n", outbuf ); \ + } +#else +#define DUMP_RESP +#endif /* L1_DEBUG */ + + /* check response code */ + COPY_BUFFER_TO_INT(resp, index, buf32); + if( buf32 != L1_RESP_OK ) { + DUMP_RESP; + return buf32; + } + + /* get number of response fields */ + l1_fldno = resp[index++]; + + va_start( al, resp_nargs ); + + /* copy out response fields */ + while( argno < resp_nargs ) { + l1_fldno--; + l1_fld_t = va_arg( al, int ); argno++; + switch( l1_fld_t ) + { + case L1_ARG_INT: + if( resp[index++] != L1_ARG_INT ) { + /* type mismatch */ + va_end( al ); + DUMP_RESP; + return -1; + } + bufptr = va_arg( al, int* ); argno++; + COPY_BUFFER_TO_BUFFER(resp, index, bufptr); + break; + + case L1_ARG_ASCII: + if( resp[index++] != L1_ARG_ASCII ) { + /* type mismatch */ + va_end( al ); + DUMP_RESP; + return -1; + } + bufptr = va_arg( al, char* ); argno++; + strcpy( (char *)bufptr, (char *)&(resp[index]) ); + /* include terminating null */ + index += (strlen( &(resp[index]) ) + 1); + break; + + default: + if( (l1_fld_t & L1_ARG_UNKNOWN) == L1_ARG_UNKNOWN ) + { + int *arglen; + + arglen = va_arg( al, int* ); argno++; + bufptr = va_arg( al, void* ); argno++; + *arglen = ((resp[index++] & ~L1_ARG_UNKNOWN) & 0xff); + BCOPY( &(resp[index]), bufptr, *arglen ); + index += (*arglen); + } + + else { + /* unhandled type */ + va_end( al ); + DUMP_RESP; + return -1; + } + } + } + va_end( al ); + + if( (l1_fldno != 0) || (argno != resp_nargs) ) { + /* wrong number of arguments */ + DUMP_RESP; + return -1; + } + return 0; +} + + + + +/* sc_send takes as arguments a system controller struct, a + * buffer which contains a Bedrock<->L1 "request" message, + * the message length, and the subchannel (presumably obtained + * from an earlier invocation of sc_open) over which the + * message is to be sent. The final argument ("wait") indicates + * whether the send is to be performed synchronously or not. + * + * sc_send returns either zero or an error value. Synchronous sends + * (wait != 0) will not return until the data has actually been sent + * to the UART. Synchronous sends generally receive privileged + * treatment. The intent is that they be used sparingly, for such + * purposes as kernel printf's (the "ducons" routines). Run-of-the-mill + * console output and L1 requests should NOT use a non-zero value + * for wait. + */ +int +sc_send( l1sc_t *sc, int ch, char *msg, int len, int wait ) +{ + char type_and_subch; + int result; + + if( (ch < 0) || ( ch >= BRL1_NUM_SUBCHANS) ) { + return SC_BADSUBCH; + } + + /* Verify that this is an open subchannel + */ + if( sc->subch[ch].use == BRL1_SUBCH_FREE ) + { + return SC_NOPEN; + } + + type_and_subch = (BRL1_REQUEST | ((u_char)ch)); + result = brl1_send( sc, msg, len, type_and_subch, wait ); + + /* If we sent as much as we asked to, return "ok". */ + if( result == len ) + return( SC_SUCCESS ); + + /* Or, if we sent less, than either the UART is busy or + * we're trying to send too large a packet anyway. + */ + else if( result >= 0 && result < len ) + return( SC_BUSY ); + + /* Or, if something else went wrong (result < 0), then + * return that error value. + */ + else + return( result ); +} + + + +/* subch_pull_msg pulls a message off the receive queue for subch + * and places it the buffer pointed to by msg. This routine should only + * be called when the caller already knows a message is available on the + * receive queue (and, in the kernel, only when the subchannel data lock + * is held by the caller). + */ +static void +subch_pull_msg( brl1_sch_t *subch, char *msg, int *len ) +{ + sc_cq_t *q; /* receive queue */ + int before_wrap, /* packet may be split into two different */ + after_wrap; /* pieces to acommodate queue wraparound */ + + /* pull message off the receive queue */ + q = subch->iqp; + + cq_rem( q, *len ); /* remove length byte and store */ + cq_discard( q ); /* remove type/subch byte and discard */ + + if ( *len > 0 ) + (*len)--; /* don't count type/subch byte in length returned */ + + if( (q->opos + (*len)) > BRL1_QSIZE ) { + before_wrap = BRL1_QSIZE - q->opos; + after_wrap = (*len) - before_wrap; + } + else { + before_wrap = (*len); + after_wrap = 0; + } + + BCOPY( q->buf + q->opos, msg, before_wrap ); + if( after_wrap ) { + BCOPY( q->buf, msg + before_wrap, after_wrap ); + q->opos = after_wrap; + } + else { + q->opos = ((q->opos + before_wrap) & (BRL1_QSIZE - 1)); + } + atomicAddInt( &(subch->packet_arrived), -1 ); +} + + +/* sc_recv_poll can be called as a blocking or non-blocking function; + * it attempts to pull a message off of the subchannel specified + * in the argument list (ch). + * + * The "block" argument, if non-zero, is interpreted as a timeout + * delay (to avoid permanent waiting). + */ + +int +sc_recv_poll( l1sc_t *sc, int ch, char *msg, int *len, uint64_t block ) +{ + int pl; /* lock cookie */ + int is_msg = 0; + brl1_sch_t *subch = &(sc->subch[ch]); + + rtc_time_t exp_time = rtc_time() + block; + + /* sanity check-- make sure this is an open subchannel */ + if( subch->use == BRL1_SUBCH_FREE ) + return( SC_NOPEN ); + + do { + + /* kick the next lower layer and see if it pulls anything in + */ + brl1_receive( sc ); + is_msg = subch->packet_arrived; + + } while( block && !is_msg && (rtc_time() < exp_time) ); + + if( !is_msg ) { + /* no message and we didn't care to wait for one */ + return( SC_NMSG ); + } + + SUBCH_DATA_LOCK( subch, pl ); + subch_pull_msg( subch, msg, len ); + SUBCH_DATA_UNLOCK( subch, pl ); + + return( SC_SUCCESS ); +} + + +/* Like sc_recv_poll, sc_recv_intr can be called in either a blocking + * or non-blocking mode. Rather than polling until an appointed timeout, + * however, sc_recv_intr sleeps on a syncrhonization variable until a + * signal from the lower layer tells us that a packet has arrived. + * + * sc_recv_intr can't be used with remote (router) L1s. + */ +int +sc_recv_intr( l1sc_t *sc, int ch, char *msg, int *len, uint64_t block ) +{ + int pl; /* lock cookie */ + int is_msg = 0; + brl1_sch_t *subch = &(sc->subch[ch]); + + do { + SUBCH_DATA_LOCK(subch, pl); + is_msg = subch->packet_arrived; + if( !is_msg && block ) { + /* wake me when you've got something */ + subch->rx_notify = sc_data_ready; + sv_wait( &(subch->arrive_sv), 0, &(subch->data_lock), pl ); + if( subch->use == BRL1_SUBCH_FREE ) { + /* oops-- somebody closed our subchannel while we were + * sleeping! + */ + + /* no need to unlock since the channel's closed anyhow */ + return( SC_NOPEN ); + } + } + } while( !is_msg && block ); + + if( !is_msg ) { + /* no message and we didn't care to wait for one */ + SUBCH_DATA_UNLOCK( subch, pl ); + return( SC_NMSG ); + } + + subch_pull_msg( subch, msg, len ); + SUBCH_DATA_UNLOCK( subch, pl ); + + return( SC_SUCCESS ); +} + +/* sc_command implements a (blocking) combination of sc_send and sc_recv. + * It is intended to be the SN1 equivalent of SN0's "elsc_command", which + * issued a system controller command and then waited for a response from + * the system controller before returning. + * + * cmd points to the outgoing command; resp points to the buffer in + * which the response is to be stored. Both buffers are assumed to + * be the same length; if there is any doubt as to whether the + * response buffer is long enough to hold the L1's response, then + * make it BRL1_QSIZE bytes-- no Bedrock<->L1 message can be any + * bigger. + * + * Be careful using the same buffer for both cmd and resp; it could get + * hairy if there were ever an L1 command reqeuest that spanned multiple + * packets. (On the other hand, that would require some additional + * rewriting of the L1 command interface anyway.) + */ +#define __RETRIES 50 +#define __WAIT_SEND ( sc->uart != BRL1_LOCALUART ) +#define __WAIT_RECV 10000000 + + +int +sc_command( l1sc_t *sc, int ch, char *cmd, char *resp, int *len ) +{ +#ifndef CONFIG_SERIAL_SGI_L1_PROTOCOL + return SC_NMSG; +#else + int result; + int retries; + + if ( IS_RUNNING_ON_SIMULATOR() ) + return SC_NMSG; + + retries = __RETRIES; + + while( (result = sc_send( sc, ch, cmd, *len, __WAIT_SEND )) < 0 ) { + if( result == SC_BUSY ) { + retries--; + if( retries <= 0 ) + return result; + uart_delay(500); + } + else { + return result; + } + } + + /* block on sc_recv_* */ +#ifdef notyet + if( sc->uart == BRL1_LOCALUART ) { + return( sc_recv_intr( sc, ch, resp, len, __WAIT_RECV ) ); + } + else +#endif + { + return( sc_recv_poll( sc, ch, resp, len, __WAIT_RECV ) ); + } +#endif /* CONFIG_SERIAL_SGI_L1_PROTOCOL */ +} + +/* sc_command_kern is a knuckle-dragging, no-patience version of sc_command + * used in situations where the kernel has a command that shouldn't be + * delayed until the send buffer clears. sc_command should be used instead + * under most circumstances. + */ +int +sc_command_kern( l1sc_t *sc, int ch, char *cmd, char *resp, int *len ) +{ +#ifndef CONFIG_SERIAL_SGI_L1_PROTOCOL + return SC_NMSG; +#else + int result; + + if ( IS_RUNNING_ON_SIMULATOR() ) + return SC_NMSG; + + if( (result = sc_send( sc, ch, cmd, *len, 1 )) < 0 ) { + return result; + } + + return( sc_recv_poll( sc, ch, resp, len, __WAIT_RECV ) ); +#endif /* CONFIG_SERIAL_SGI_L1_PROTOCOL */ +} + + + +/* sc_poll checks the queue corresponding to the given + * subchannel to see if there's anything available. If + * not, it kicks the brl1 layer and then checks again. + * + * Returns 1 if input is available on the given queue, + * 0 otherwise. + */ +int +sc_poll( l1sc_t *sc, int ch ) +{ + brl1_sch_t *subch = &(sc->subch[ch]); + + if( subch->packet_arrived ) + return 1; + + brl1_receive( sc ); + + if( subch->packet_arrived ) + return 1; + + return 0; +} + +/* for now, sc_init just calls brl1_init + */ +void +sc_init( l1sc_t *sc, nasid_t nasid, net_vec_t uart ) +{ + if ( !IS_RUNNING_ON_SIMULATOR() ) + brl1_init( sc, nasid, uart ); +} + +/* sc_dispatch_env_event handles events sent from the system control + * network's environmental monitor tasks. + */ +static void +sc_dispatch_env_event( uint code, int argc, char *args, int maxlen ) +{ + int j, i = 0; + uint32_t ESPcode; + + switch( code ) { + /* for now, all codes do the same thing: grab two arguments + * and print a cmn_err_tag message */ + default: + /* check number of arguments */ + if( argc != 2 ) { + L1_DBG_PRF(( "sc_dispatch_env_event: " + "expected 2 arguments, got %d\n", argc )); + return; + } + + /* get ESP code (integer argument) */ + if( args[i++] != L1_ARG_INT ) { + L1_DBG_PRF(( "sc_dispatch_env_event: " + "expected integer argument\n" )); + return; + } + /* WARNING: highly endian */ + COPY_BUFFER_TO_INT(args, i, ESPcode); + + /* verify string argument */ + if( args[i++] != L1_ARG_ASCII ) { + L1_DBG_PRF(( "sc_dispatch_env_event: " + "expected an ASCII string\n" )); + return; + } + for( j = i; j < maxlen; j++ ) { + if( args[j] == '\0' ) break; /* found string termination */ + } + if( j == maxlen ) { + j--; + L1_DBG_PRF(( "sc_dispatch_env_event: " + "message too long-- truncating\n" )); + } + + /* strip out trailing cr/lf */ + for( ; + j > 1 && ((args[j-1] == 0xd) || (args[j-1] == 0xa)); + j-- ); + args[j] = '\0'; + + /* strip out leading cr/lf */ + for( ; + i < j && ((args[i] == 0xd) || (args[i] == 0xa)); + i++ ); + + /* write the event to syslog */ +#ifdef IRIX + cmn_err_tag( ESPcode, CE_WARN, &(args[i]) ); +#endif + } +} + + +/* sc_event waits for events to arrive from the system controller, and + * prints appropriate messages to the syslog. + */ +static void +sc_event( l1sc_t *sc, int ch ) +{ + char event[BRL1_QSIZE]; + int i; + int result; + int event_len; + uint32_t ev_src; + uint32_t ev_code; + int ev_argc; + + while(1) { + + bzero( event, BRL1_QSIZE ); + + /* + * wait for an event + */ + result = sc_recv_intr( sc, ch, event, &event_len, 1 ); + if( result != SC_SUCCESS ) { + cmn_err( CE_WARN, "Error receiving sysctl event on nasid %d\n", + sc->nasid ); + } + else { + /* + * an event arrived; break it down into useful pieces + */ +#if defined(L1_DEBUG) && 0 + int ix; + printf( "Event packet received:\n" ); + for (ix = 0; ix < 64; ix++) { + printf( "%x%x ", ((event[ix] >> 4) & ((uint64_t)0xf)), + (event[ix] & ((uint64_t)0xf)) ); + if( (ix % 16) == 0xf ) printf( "\n" ); + } +#endif /* L1_DEBUG */ + + i = 0; + + /* get event source */ + COPY_BUFFER_TO_INT(event, i, ev_src); + COPY_BUFFER_TO_INT(event, i, ev_code); + + /* get arg count */ + ev_argc = (event[i++] & 0xffUL); + + /* dispatch events by task */ + switch( (ev_src & L1_ADDR_TASK_MASK) >> L1_ADDR_TASK_SHFT ) + { + case L1_ADDR_TASK_ENV: /* environmental monitor event */ + sc_dispatch_env_event( ev_code, ev_argc, &(event[i]), + BRL1_QSIZE - i ); + break; + + default: /* unhandled task type */ + L1_DBG_PRF(( "Unhandled event type received from system " + "controllers: source task %x\n", + (ev_src & L1_ADDR_TASK_MASK) >> L1_ADDR_TASK_SHFT + )); + } + } + + } +} + +/* sc_listen sets up a service thread to listen for incoming events. + */ +void +sc_listen( l1sc_t *sc ) +{ + int pl; + int result; + brl1_sch_t *subch; + + char msg[BRL1_QSIZE]; + int len; /* length of message being sent */ + int ch; /* system controller subchannel used */ + + extern int msc_shutdown_pri; + + /* grab the designated "event subchannel" */ + SUBCH_LOCK( sc, pl ); + subch = &(sc->subch[BRL1_EVENT_SUBCH]); + if( subch->use != BRL1_SUBCH_FREE ) { + SUBCH_UNLOCK( sc, pl ); + cmn_err( CE_WARN, "sysctl event subchannel in use! " + "Not monitoring sysctl events.\n" ); + return; + } + subch->use = BRL1_SUBCH_RSVD; + SUBCH_UNLOCK( sc, pl ); + + subch->packet_arrived = 0; + subch->target = BRL1_LOCALUART; + sv_init( &(subch->arrive_sv), SV_FIFO, NULL ); + spinlock_init( &(subch->data_lock), NULL ); + subch->tx_notify = NULL; + subch->rx_notify = sc_data_ready; + subch->iqp = kmem_zalloc_node( sizeof(sc_cq_t), KM_NOSLEEP, + NASID_TO_COMPACT_NODEID(sc->nasid) ); + ASSERT( subch->iqp ); + cq_init( subch->iqp ); + +#ifdef LINUX_KERNEL_THREADS + /* set up a thread to listen for events */ + sthread_create( "sysctl event handler", 0, 0, 0, msc_shutdown_pri, + KT_PS, (st_func_t *) sc_event, + (void *)sc, (void *)(uint64_t)BRL1_EVENT_SUBCH, 0, 0 ); +#endif + + /* signal the L1 to begin sending events */ + bzero( msg, BRL1_QSIZE ); + ch = sc_open( sc, L1_ADDR_LOCAL ); + + if( (len = sc_construct_msg( sc, ch, msg, BRL1_QSIZE, + L1_ADDR_TASK_GENERAL, + L1_REQ_EVENT_SUBCH, 2, + L1_ARG_INT, BRL1_EVENT_SUBCH )) < 0 ) + { + sc_close( sc, ch ); + L1_DBG_PRF(( "Failure in sc_construct_msg (%d)\n", len )); + goto err_return; + } + + result = sc_command_kern( sc, ch, msg, msg, &len ); + if( result < 0 ) + { + sc_close( sc, ch ); + L1_DBG_PRF(( "Failure in sc_command_kern (%d)\n", result )); + goto err_return; + } + + sc_close( sc, ch ); + + result = sc_interpret_resp( msg, 0 ); + if( result < 0 ) + { + L1_DBG_PRF(( "Failure in sc_interpret_resp (%d)\n", result )); + goto err_return; + } + + /* everything went fine; just return */ + return; + +err_return: + /* there was a problem; complain */ + cmn_err( CE_WARN, "failed to set sysctl event-monitoring subchannel. " + "Sysctl events will not be monitored.\n" ); +} + + +/********************************************************************* + * elscuart functions. These provide a uart-like interface to the + * bedrock/l1 protocol console channels. They are similar in form + * and intent to the elscuart_* functions defined for SN0 in elsc.c. + * + */ + +int _elscuart_flush( l1sc_t *sc ); + +/* Leave room in queue for CR/LF */ +#define ELSCUART_LINE_MAX (BRL1_QSIZE - 2) + + +/* + * _elscuart_putc provides an entry point to the L1 interface driver; + * writes a single character to the output queue. Flushes at the + * end of each line, and translates newlines into CR/LF. + * + * The kernel should generally use l1_cons_write instead, since it assumes + * buffering, translation, prefixing, etc. are done at a higher + * level. + * + */ +int +_elscuart_putc( l1sc_t *sc, int c ) +{ + sc_cq_t *q; + + q = &(sc->oq[ MAP_OQ(L1_ELSCUART_SUBCH(get_myid())) ]); + + if( c != '\n' && c != '\r' && cq_used(q) >= ELSCUART_LINE_MAX ) { + cq_add( q, '\r' ); + cq_add( q, '\n' ); + _elscuart_flush( sc ); + sc->sol = 1; + } + + if( sc->sol && c != '\r' ) { + char prefix[16], *s; + + if( cq_room( q ) < 8 && _elscuart_flush(sc) < 0 ) + { + return -1; + } + + if( sc->verbose ) + { +#ifdef SUPPORT_PRINTING_M_FORMAT + sprintf( prefix, + "%c %d%d%d %M:", + 'A' + get_myid(), + sc->nasid / 100, + (sc->nasid / 10) % 10, + sc->nasid / 10, + sc->modid ); +#else + sprintf( prefix, + "%c %d%d%d 0x%x:", + 'A' + get_myid(), + sc->nasid / 100, + (sc->nasid / 10) % 10, + sc->nasid / 10, + sc->modid ); +#endif + + for( s = prefix; *s; s++ ) + cq_add( q, *s ); + } + sc->sol = 0; + + } + + if( cq_room( q ) < 2 && _elscuart_flush(sc) < 0 ) + { + return -1; + } + + if( c == '\n' ) { + cq_add( q, '\r' ); + sc->sol = 1; + } + + cq_add( q, (u_char) c ); + + if( c == '\n' ) { + /* flush buffered line */ + if( _elscuart_flush( sc ) < 0 ) + { + return -1; + } + } + + if( c== '\r' ) + { + sc->sol = 1; + } + + return 0; +} + + +/* + * _elscuart_getc reads a character from the input queue. This + * routine blocks. + */ +int +_elscuart_getc( l1sc_t *sc ) +{ + int r; + + while( (r = _elscuart_poll( sc )) == 0 ); + + if( r < 0 ) { + /* some error occured */ + return r; + } + + return _elscuart_readc( sc ); +} + + + +/* + * _elscuart_poll returns 1 if characters are ready for the + * calling processor, 0 if they are not + */ +int +_elscuart_poll( l1sc_t *sc ) +{ + int result; + + if( sc->cons_listen ) { + result = l1_cons_poll( sc ); + if( result ) + return result; + } + + return sc_poll( sc, L1_ELSCUART_SUBCH(get_myid()) ); +} + + + +/* _elscuart_readc is to be used only when _elscuart_poll has + * indicated that a character is waiting. Pulls a character + * of this processor's console queue and returns it. + * + */ +int +_elscuart_readc( l1sc_t *sc ) +{ + int c, pl; + sc_cq_t *q; + brl1_sch_t *subch; + + if( sc->cons_listen ) { + subch = &(sc->subch[ SC_CONS_SYSTEM ]); + q = subch->iqp; + + SUBCH_DATA_LOCK( subch, pl ); + if( !cq_empty( q ) ) { + cq_rem( q, c ); + if( cq_empty( q ) ) { + subch->packet_arrived = 0; + } + SUBCH_DATA_UNLOCK( subch, pl ); + return c; + } + SUBCH_DATA_UNLOCK( subch, pl ); + } + + subch = &(sc->subch[ L1_ELSCUART_SUBCH(get_myid()) ]); + q = subch->iqp; + + SUBCH_DATA_LOCK( subch, pl ); + if( cq_empty( q ) ) { + SUBCH_DATA_UNLOCK( subch, pl ); + return -1; + } + + cq_rem( q, c ); + if( cq_empty ( q ) ) { + subch->packet_arrived = 0; + } + SUBCH_DATA_UNLOCK( subch, pl ); + + return c; +} + + +/* + * _elscuart_flush flushes queued output to the the L1. + * This routine blocks until the queue is flushed. + */ +int +_elscuart_flush( l1sc_t *sc ) +{ + int r, n; + char buf[BRL1_QSIZE]; + sc_cq_t *q = &(sc->oq[ MAP_OQ(L1_ELSCUART_SUBCH(get_myid())) ]); + + while( (n = cq_used(q)) ) { + + /* buffer queue contents */ + r = BRL1_QSIZE - q->opos; + + if( n > r ) { + BCOPY( q->buf + q->opos, buf, r ); + BCOPY( q->buf, buf + r, n - r ); + } else { + BCOPY( q->buf + q->opos, buf, n ); + } + + /* attempt to send buffer contents */ + r = brl1_send( sc, buf, cq_used( q ), + (BRL1_EVENT | L1_ELSCUART_SUBCH(get_myid())), 1 ); + + /* if no error, dequeue the sent characters; otherwise, + * return the error + */ + if( r >= SC_SUCCESS ) { + q->opos = (q->opos + r) % BRL1_QSIZE; + } + else { + return r; + } + } + + return 0; +} + + + +/* _elscuart_probe returns non-zero if the L1 (and + * consequently the elscuart) can be accessed + */ +int +_elscuart_probe( l1sc_t *sc ) +{ +#ifndef CONFIG_SERIAL_SGI_L1_PROTOCOL + return 0; +#else + char ver[BRL1_QSIZE]; + extern int elsc_version( l1sc_t *, char * ); + if ( IS_RUNNING_ON_SIMULATOR() ) + return 0; + return( elsc_version(sc, ver) >= 0 ); +#endif /* CONFIG_SERIAL_SGI_L1_PROTOCOL */ +} + + + +/* _elscuart_init zeroes out the l1sc_t console + * queues for this processor's console subchannel. + */ +void +_elscuart_init( l1sc_t *sc ) +{ + int pl; + brl1_sch_t *subch = &sc->subch[L1_ELSCUART_SUBCH(get_myid())]; + + SUBCH_DATA_LOCK(subch, pl); + + subch->packet_arrived = 0; + cq_init( subch->iqp ); + cq_init( &sc->oq[MAP_OQ(L1_ELSCUART_SUBCH(get_myid()))] ); + + SUBCH_DATA_UNLOCK(subch, pl); +} + + +#ifdef IRIX + +/* elscuart_syscon_listen causes the processor on which it's + * invoked to "listen" to the system console subchannel (that + * is, subchannel 4) for console input. + */ +void +elscuart_syscon_listen( l1sc_t *sc ) +{ + int pl; + brl1_sch_t *subch = &(sc->subch[SC_CONS_SYSTEM]); + + /* if we're already listening, don't bother */ + if( sc->cons_listen ) + return; + + SUBCH_DATA_LOCK( subch, pl ); + + subch->use = BRL1_SUBCH_RSVD; + subch->packet_arrived = 0; + + SUBCH_DATA_UNLOCK( subch, pl ); + + + sc->cons_listen = 1; +} +#endif /* IRIX */ |