diff options
Diffstat (limited to 'arch/ia64/sn/io/ml_SN_intr.c')
-rw-r--r-- | arch/ia64/sn/io/ml_SN_intr.c | 1730 |
1 files changed, 1730 insertions, 0 deletions
diff --git a/arch/ia64/sn/io/ml_SN_intr.c b/arch/ia64/sn/io/ml_SN_intr.c new file mode 100644 index 000000000..c643b6e8b --- /dev/null +++ b/arch/ia64/sn/io/ml_SN_intr.c @@ -0,0 +1,1730 @@ +/* $Id$ + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1992 - 1997, 2000 Silicon Graphics, Inc. + * Copyright (C) 2000 by Alan Mayer + */ + +/* + * intr.c- + * This file contains all of the routines necessary to set up and + * handle interrupts on an IP27 board. + */ + +#ident "$Revision: 1.167 $" + +#include <linux/types.h> +#include <linux/config.h> +#include <linux/slab.h> +#include <asm/smp.h> +#include <asm/sn/sgi.h> +#include <asm/sn/iograph.h> +#include <asm/sn/invent.h> +#include <asm/sn/hcl.h> +#include <asm/sn/labelcl.h> +#include <asm/sn/nodemask.h> +#include <asm/sn/sn_private.h> +#include <asm/sn/klconfig.h> +#include <asm/sn/synergy.h> +#include <asm/sn/sn_cpuid.h> +#include <asm/sn/pci/pciio.h> +#include <asm/sn/pci/pcibr.h> +#include <asm/sn/xtalk/xtalk.h> +#include <asm/sn/pci/pcibr_private.h> + +#if DEBUG_INTR_TSTAMP_DEBUG +#include <sys/debug.h> +#include <sys/idbg.h> +#include <sys/inst.h> +void do_splx_log(int, int); +void spldebug_log_event(int); +#endif + +// FIXME - BRINGUP +#ifdef CONFIG_SMP +extern unsigned long cpu_online_map; +#endif +#define cpu_allows_intr(cpu) (1) +// If I understand what's going on with this, 32 should work. +// physmem_maxradius seems to be the maximum number of router +// hops to get from one end of the system to the other. With +// a maximally configured machine, with the dumbest possible +// topology, we would make 32 router hops. For what we're using +// it for, the dumbest possible should suffice. +#define physmem_maxradius() 32 + +#define SUBNODE_ANY -1 + +extern int nmied; +extern int hub_intr_wakeup_cnt; +extern synergy_da_t *Synergy_da_indr[]; +extern cpuid_t master_procid; + +extern cnodeid_t master_node_get(devfs_handle_t vhdl); + + +#define INTR_LOCK(vecblk) \ + (s = mutex_spinlock(&(vecblk)->vector_lock)) +#define INTR_UNLOCK(vecblk) \ + mutex_spinunlock(&(vecblk)->vector_lock, s) + +/* + * REACT/Pro + */ + + + +/* + * Find first bit set + * Used outside this file also + */ +int ms1bit(unsigned long x) +{ + int b; + + if (x >> 32) b = 32, x >>= 32; + else b = 0; + if (x >> 16) b += 16, x >>= 16; + if (x >> 8) b += 8, x >>= 8; + if (x >> 4) b += 4, x >>= 4; + if (x >> 2) b += 2, x >>= 2; + + return b + (int) (x >> 1); +} + +/* ARGSUSED */ +void +intr_stray(void *lvl) +{ + printk("Stray Interrupt - level %ld to cpu %d", (long)lvl, cpuid()); +} + +#if defined(DEBUG) + +/* Infrastructure to gather the device - target cpu mapping info */ +#define MAX_DEVICES 1000 /* Reasonable large number . Need not be + * the exact maximum # devices possible. + */ +#define MAX_NAME 100 +typedef struct { + dev_t dev; /* device */ + cpuid_t cpuid; /* target cpu */ + cnodeid_t cnodeid;/* node on which the target cpu is present */ + int bit; /* intr bit reserved */ + char intr_name[MAX_NAME]; /* name of the interrupt */ +} intr_dev_targ_map_t; + +intr_dev_targ_map_t intr_dev_targ_map[MAX_DEVICES]; +uint64_t intr_dev_targ_map_size; +lock_t intr_dev_targ_map_lock; + +/* Print out the device - target cpu mapping. + * This routine is used only in the idbg command + * "intrmap" + */ +void +intr_dev_targ_map_print(cnodeid_t cnodeid) +{ + int i,j,size = 0; + int print_flag = 0,verbose = 0; + char node_name[10]; + + if (cnodeid != CNODEID_NONE) { + nodepda_t *npda; + + npda = NODEPDA(cnodeid); + for (j=0; j<NUM_SUBNODES; j++) { + qprintf("\n SUBNODE %d\n INT_PEND0: ", j); + for(i = 0 ; i < N_INTPEND_BITS ; i++) + qprintf("%d",SNPDA(npda,j)->intr_dispatch0.info[i].ii_flags); + qprintf("\n INT_PEND1: "); + for(i = 0 ; i < N_INTPEND_BITS ; i++) + qprintf("%d",SNPDA(npda,j)->intr_dispatch1.info[i].ii_flags); + } + verbose = 1; + } + qprintf("\n Device - Target Map [Interrupts: %s Node%s]\n\n", + (verbose ? "All" : "Non-hardwired"), + (cnodeid == CNODEID_NONE) ? "s: All" : node_name); + + qprintf("Device\tCpu\tCnode\tIntr_bit\tIntr_name\n"); + for (i = 0 ; i < intr_dev_targ_map_size ; i++) { + + print_flag = 0; + if (verbose) { + if (cnodeid != CNODEID_NONE) { + if (cnodeid == intr_dev_targ_map[i].cnodeid) + print_flag = 1; + } else { + print_flag = 1; + } + } else { + if (intr_dev_targ_map[i].dev != 0) { + if (cnodeid != CNODEID_NONE) { + if (cnodeid == + intr_dev_targ_map[i].cnodeid) + print_flag = 1; + } else { + print_flag = 1; + } + } + } + if (print_flag) { + size++; + qprintf("%d\t%d\t%d\t%d\t%s\n", + intr_dev_targ_map[i].dev, + intr_dev_targ_map[i].cpuid, + intr_dev_targ_map[i].cnodeid, + intr_dev_targ_map[i].bit, + intr_dev_targ_map[i].intr_name); + } + + } + qprintf("\nTotal : %d\n",size); +} +#endif /* DEBUG */ + +/* + * The spinlocks have already been initialized. Now initialize the interrupt + * vectors. One processor on each hub does the work. + */ +void +intr_init_vecblk(nodepda_t *npda, cnodeid_t node, int sn) +{ + int i, ip=0; + intr_vecblk_t *vecblk; + subnode_pda_t *snpda; + + + snpda = SNPDA(npda,sn); + do { + if (ip == 0) { + vecblk = &snpda->intr_dispatch0; + } else { + vecblk = &snpda->intr_dispatch1; + } + + /* Initialize this vector. */ + for (i = 0; i < N_INTPEND_BITS; i++) { + vecblk->vectors[i].iv_func = intr_stray; + vecblk->vectors[i].iv_prefunc = NULL; + vecblk->vectors[i].iv_arg = (void *)(__psint_t)(ip * N_INTPEND_BITS + i); + + vecblk->info[i].ii_owner_dev = 0; + strcpy(vecblk->info[i].ii_name, "Unused"); + vecblk->info[i].ii_flags = 0; /* No flags */ + vecblk->vectors[i].iv_mustruncpu = -1; /* No CPU yet. */ + + } + + spinlock_init(&vecblk->vector_lock, "ivecb"); + + vecblk->vector_count = 0; + for (i = 0; i < CPUS_PER_SUBNODE; i++) + vecblk->cpu_count[i] = 0; + + vecblk->vector_state = VECTOR_UNINITED; + + } while (++ip < 2); + +} + + +/* + * do_intr_reserve_level(cpuid_t cpu, int bit, int resflags, int reserve, + * devfs_handle_t owner_dev, char *name) + * Internal work routine to reserve or unreserve an interrupt level. + * cpu is the CPU to which the interrupt will be sent. + * bit is the level bit to reserve. -1 means any level + * resflags should include II_ERRORINT if this is an + * error interrupt, II_THREADED if the interrupt handler + * will be threaded, or 0 otherwise. + * reserve should be set to II_RESERVE or II_UNRESERVE + * to get or clear a reservation. + * owner_dev is the device that "owns" this interrupt, if supplied + * name is a human-readable name for this interrupt, if supplied + * intr_reserve_level returns the bit reserved or -1 to indicate an error + */ +static int +do_intr_reserve_level(cpuid_t cpu, int bit, int resflags, int reserve, + devfs_handle_t owner_dev, char *name) +{ + intr_vecblk_t *vecblk; + hub_intmasks_t *hub_intmasks; + int s; + int rv = 0; + int ip; + synergy_da_t *sda; + int which_synergy; + cnodeid_t cnode; + + ASSERT(bit < N_INTPEND_BITS * 2); + + cnode = cpuid_to_cnodeid(cpu); + which_synergy = cpuid_to_synergy(cpu); + sda = Synergy_da_indr[(cnode * 2) + which_synergy]; + hub_intmasks = &sda->s_intmasks; + // hub_intmasks = &pdaindr[cpu].pda->p_intmasks; + + // if (pdaindr[cpu].pda == NULL) return -1; + if ((bit < N_INTPEND_BITS) && !(resflags & II_ERRORINT)) { + vecblk = hub_intmasks->dispatch0; + ip = 0; + } else { + ASSERT((bit >= N_INTPEND_BITS) || (bit == -1)); + bit -= N_INTPEND_BITS; /* Get position relative to INT_PEND1 reg. */ + vecblk = hub_intmasks->dispatch1; + ip = 1; + } + + INTR_LOCK(vecblk); + + if (bit <= -1) { + // bit = 0; + bit = 7; /* First available on SNIA */ + ASSERT(reserve == II_RESERVE); + /* Choose any available level */ + for (; bit < N_INTPEND_BITS; bit++) { + if (!(vecblk->info[bit].ii_flags & II_RESERVE)) { + rv = bit; + break; + } + } + + /* Return -1 if all interrupt levels int this register are taken. */ + if (bit == N_INTPEND_BITS) + rv = -1; + + } else { + /* Reserve a particular level if it's available. */ + if ((vecblk->info[bit].ii_flags & II_RESERVE) == reserve) { + /* Can't (un)reserve a level that's already (un)reserved. */ + rv = -1; + } else { + rv = bit; + } + } + + /* Reserve the level and bump the count. */ + if (rv != -1) { + if (reserve) { + int maxlen = sizeof(vecblk->info[bit].ii_name) - 1; + int namelen; + vecblk->info[bit].ii_flags |= (II_RESERVE | resflags); + vecblk->info[bit].ii_owner_dev = owner_dev; + /* Copy in the name. */ + namelen = name ? strlen(name) : 0; + strncpy(vecblk->info[bit].ii_name, name, MIN(namelen, maxlen)); + vecblk->info[bit].ii_name[maxlen] = '\0'; + vecblk->vector_count++; + } else { + vecblk->info[bit].ii_flags = 0; /* Clear all the flags */ + vecblk->info[bit].ii_owner_dev = 0; + /* Clear the name. */ + vecblk->info[bit].ii_name[0] = '\0'; + vecblk->vector_count--; + } + } + + INTR_UNLOCK(vecblk); + +#if defined(DEBUG) + if (rv >= 0) { + int namelen = name ? strlen(name) : 0; + /* Gather this device - target cpu mapping information + * in a table which can be used later by the idbg "intrmap" + * command + */ + s = mutex_spinlock(&intr_dev_targ_map_lock); + if (intr_dev_targ_map_size < MAX_DEVICES) { + intr_dev_targ_map_t *p; + + p = &intr_dev_targ_map[intr_dev_targ_map_size]; + p->dev = owner_dev; + p->cpuid = cpu; + p->cnodeid = cputocnode(cpu); + p->bit = ip * N_INTPEND_BITS + rv; + strncpy(p->intr_name, + name, + MIN(MAX_NAME,namelen)); + intr_dev_targ_map_size++; + } + mutex_spinunlock(&intr_dev_targ_map_lock,s); + } +#endif /* DEBUG */ + + return (((rv == -1) ? rv : (ip * N_INTPEND_BITS) + rv)) ; +} + + +/* + * WARNING: This routine should only be called from within ml/SN. + * Reserve an interrupt level. + */ +int +intr_reserve_level(cpuid_t cpu, int bit, int resflags, devfs_handle_t owner_dev, char *name) +{ + return(do_intr_reserve_level(cpu, bit, resflags, II_RESERVE, owner_dev, name)); +} + + +/* + * WARNING: This routine should only be called from within ml/SN. + * Unreserve an interrupt level. + */ +void +intr_unreserve_level(cpuid_t cpu, int bit) +{ + (void)do_intr_reserve_level(cpu, bit, 0, II_UNRESERVE, 0, NULL); +} + +/* + * Get values that vary depending on which CPU and bit we're operating on + */ +static hub_intmasks_t * +intr_get_ptrs(cpuid_t cpu, int bit, + int *new_bit, /* Bit relative to the register */ + hubreg_t **intpend_masks, /* Masks for this register */ + intr_vecblk_t **vecblk, /* Vecblock for this interrupt */ + int *ip) /* Which intpend register */ +{ + hub_intmasks_t *hub_intmasks; + synergy_da_t *sda; + int which_synergy; + cnodeid_t cnode; + + ASSERT(bit < N_INTPEND_BITS * 2); + + cnode = cpuid_to_cnodeid(cpu); + which_synergy = cpuid_to_synergy(cpu); + sda = Synergy_da_indr[(cnode * 2) + which_synergy]; + hub_intmasks = &sda->s_intmasks; + + // hub_intmasks = &pdaindr[cpu].pda->p_intmasks; + + if (bit < N_INTPEND_BITS) { + *intpend_masks = hub_intmasks->intpend0_masks; + *vecblk = hub_intmasks->dispatch0; + *ip = 0; + *new_bit = bit; + } else { + *intpend_masks = hub_intmasks->intpend1_masks; + *vecblk = hub_intmasks->dispatch1; + *ip = 1; + *new_bit = bit - N_INTPEND_BITS; + } + + return hub_intmasks; +} + + +/* + * intr_connect_level(cpuid_t cpu, int bit, ilvl_t intr_swlevel, + * intr_func_t intr_func, void *intr_arg); + * This is the lowest-level interface to the interrupt code. It shouldn't + * be called from outside the ml/SN directory. + * intr_connect_level hooks up an interrupt to a particular bit in + * the INT_PEND0/1 masks. Returns 0 on success. + * cpu is the CPU to which the interrupt will be sent. + * bit is the level bit to connect to + * intr_swlevel tells which software level to use + * intr_func is the interrupt handler + * intr_arg is an arbitrary argument interpreted by the handler + * intr_prefunc is a prologue function, to be called + * with interrupts disabled, to disable + * the interrupt at source. It is called + * with the same argument. Should be NULL for + * typical interrupts, which can be masked + * by the infrastructure at the level bit. + * intr_connect_level returns 0 on success or nonzero on an error + */ +/* ARGSUSED */ +int +intr_connect_level(cpuid_t cpu, int bit, ilvl_t intr_swlevel, + intr_func_t intr_func, void *intr_arg, + intr_func_t intr_prefunc) +{ + intr_vecblk_t *vecblk; + hubreg_t *intpend_masks; + int s; + int rv = 0; + int ip; + + ASSERT(bit < N_INTPEND_BITS * 2); + + (void)intr_get_ptrs(cpu, bit, &bit, &intpend_masks, + &vecblk, &ip); + + INTR_LOCK(vecblk); + + if ((vecblk->info[bit].ii_flags & II_INUSE) || + (!(vecblk->info[bit].ii_flags & II_RESERVE))) { + /* Can't assign to a level that's in use or isn't reserved. */ + rv = -1; + } else { + /* Stuff parameters into vector and info */ + vecblk->vectors[bit].iv_func = intr_func; + vecblk->vectors[bit].iv_prefunc = intr_prefunc; + vecblk->vectors[bit].iv_arg = intr_arg; + vecblk->info[bit].ii_flags |= II_INUSE; + } + + /* Now stuff the masks if everything's okay. */ + if (!rv) { + int lslice; + volatile hubreg_t *mask_reg; + // nasid_t nasid = COMPACT_TO_NASID_NODEID(cputocnode(cpu)); + nasid_t nasid = cpuid_to_nasid(cpu); + int subnode = cpuid_to_subnode(cpu); + + /* Make sure it's not already pending when we connect it. */ + REMOTE_HUB_PI_CLR_INTR(nasid, subnode, bit + ip * N_INTPEND_BITS); + + intpend_masks[0] |= (1ULL << (uint64_t)bit); + + lslice = cputolocalslice(cpu); + vecblk->cpu_count[lslice]++; +#if SN1 + /* + * On SN1, there are 8 interrupt mask registers per node: + * PI_0 MASK_0 A + * PI_0 MASK_1 A + * PI_0 MASK_0 B + * PI_0 MASK_1 B + * PI_1 MASK_0 A + * PI_1 MASK_1 A + * PI_1 MASK_0 B + * PI_1 MASK_1 B + */ +#endif + if (ip == 0) { + mask_reg = REMOTE_HUB_PI_ADDR(nasid, subnode, + PI_INT_MASK0_A + PI_INT_MASK_OFFSET * lslice); + } else { + mask_reg = REMOTE_HUB_PI_ADDR(nasid, subnode, + PI_INT_MASK1_A + PI_INT_MASK_OFFSET * lslice); + } + + HUB_S(mask_reg, intpend_masks[0]); + } + + INTR_UNLOCK(vecblk); + + return rv; +} + + +/* + * intr_disconnect_level(cpuid_t cpu, int bit) + * + * This is the lowest-level interface to the interrupt code. It should + * not be called from outside the ml/SN directory. + * intr_disconnect_level removes a particular bit from an interrupt in + * the INT_PEND0/1 masks. Returns 0 on success or nonzero on failure. + */ +int +intr_disconnect_level(cpuid_t cpu, int bit) +{ + intr_vecblk_t *vecblk; + hubreg_t *intpend_masks; + int s; + int rv = 0; + int ip; + + (void)intr_get_ptrs(cpu, bit, &bit, &intpend_masks, + &vecblk, &ip); + + INTR_LOCK(vecblk); + + if ((vecblk->info[bit].ii_flags & (II_RESERVE | II_INUSE)) != + ((II_RESERVE | II_INUSE))) { + /* Can't remove a level that's not in use or isn't reserved. */ + rv = -1; + } else { + /* Stuff parameters into vector and info */ + vecblk->vectors[bit].iv_func = (intr_func_t)NULL; + vecblk->vectors[bit].iv_prefunc = (intr_func_t)NULL; + vecblk->vectors[bit].iv_arg = 0; + vecblk->info[bit].ii_flags &= ~II_INUSE; +#ifdef BASE_ITHRTEAD + vecblk->vectors[bit].iv_mustruncpu = -1; /* No mustrun CPU any more. */ +#endif + } + + /* Now clear the masks if everything's okay. */ + if (!rv) { + int lslice; + volatile hubreg_t *mask_reg; + + intpend_masks[0] &= ~(1ULL << (uint64_t)bit); + lslice = cputolocalslice(cpu); + vecblk->cpu_count[lslice]--; + mask_reg = REMOTE_HUB_PI_ADDR(COMPACT_TO_NASID_NODEID(cputocnode(cpu)), + cpuid_to_subnode(cpu), + ip == 0 ? PI_INT_MASK0_A : PI_INT_MASK1_A); + mask_reg = (volatile hubreg_t *)((__psunsigned_t)mask_reg + + (PI_INT_MASK_OFFSET * lslice)); + *mask_reg = intpend_masks[0]; + } + + INTR_UNLOCK(vecblk); + + return rv; +} + +/* + * Actually block or unblock an interrupt + */ +void +do_intr_block_bit(cpuid_t cpu, int bit, int block) +{ + intr_vecblk_t *vecblk; + int s; + int ip; + hubreg_t *intpend_masks; + volatile hubreg_t mask_value; + volatile hubreg_t *mask_reg; + + intr_get_ptrs(cpu, bit, &bit, &intpend_masks, &vecblk, &ip); + + INTR_LOCK(vecblk); + + if (block) + /* Block */ + intpend_masks[0] &= ~(1ULL << (uint64_t)bit); + else + /* Unblock */ + intpend_masks[0] |= (1ULL << (uint64_t)bit); + + if (ip == 0) { + mask_reg = REMOTE_HUB_PI_ADDR(COMPACT_TO_NASID_NODEID(cputocnode(cpu)), + cpuid_to_subnode(cpu), PI_INT_MASK0_A); + } else { + mask_reg = REMOTE_HUB_PI_ADDR(COMPACT_TO_NASID_NODEID(cputocnode(cpu)), + cpuid_to_subnode(cpu), PI_INT_MASK1_A); + } + + HUB_S(mask_reg, intpend_masks[0]); + + /* + * Wait for it to take effect. (One read should suffice.) + * This is only necessary when blocking an interrupt + */ + if (block) + while ((mask_value = HUB_L(mask_reg)) != intpend_masks[0]) + ; + + INTR_UNLOCK(vecblk); +} + + +/* + * Block a particular interrupt (cpu/bit pair). + */ +/* ARGSUSED */ +void +intr_block_bit(cpuid_t cpu, int bit) +{ + do_intr_block_bit(cpu, bit, 1); +} + + +/* + * Unblock a particular interrupt (cpu/bit pair). + */ +/* ARGSUSED */ +void +intr_unblock_bit(cpuid_t cpu, int bit) +{ + do_intr_block_bit(cpu, bit, 0); +} + + +/* verifies that the specified CPUID is on the specified SUBNODE (if any) */ +#define cpu_on_subnode(cpuid, which_subnode) \ + (((which_subnode) == SUBNODE_ANY) || (cpuid_to_subnode(cpuid) == (which_subnode))) + + +/* + * Choose one of the CPUs on a specified node or subnode to receive + * interrupts. Don't pick a cpu which has been specified as a NOINTR cpu. + * + * Among all acceptable CPUs, the CPU that has the fewest total number + * of interrupts targetted towards it is chosen. Note that we never + * consider how frequent each of these interrupts might occur, so a rare + * hardware error interrupt is weighted equally with a disk interrupt. + */ +static cpuid_t +do_intr_cpu_choose(cnodeid_t cnode, int which_subnode) +{ + cpuid_t cpu, best_cpu = CPU_NONE; + int slice, min_count=1000; + + min_count = 1000; + for (slice=0; slice < CPUS_PER_NODE; slice++) { + intr_vecblk_t *vecblk0, *vecblk1; + int total_intrs_to_slice; + subnode_pda_t *snpda; + int local_cpu_num; + + cpu = cnode_slice_to_cpuid(cnode, slice); + cpu = cpu_logical_id(cpu); + if (cpu == CPU_NONE) + continue; + + /* If this cpu isn't enabled for interrupts, skip it */ + if (!cpu_enabled(cpu) || !cpu_allows_intr(cpu)) + continue; + + /* If this isn't the right subnode, skip it */ + if (!cpu_on_subnode(cpu, which_subnode)) + continue; + + /* OK, this one's a potential CPU for interrupts */ + snpda = SUBNODEPDA(cnode,SUBNODE(slice)); + vecblk0 = &snpda->intr_dispatch0; + vecblk1 = &snpda->intr_dispatch1; + local_cpu_num = LOCALCPU(slice); + total_intrs_to_slice = vecblk0->cpu_count[local_cpu_num] + + vecblk1->cpu_count[local_cpu_num]; + + if (min_count > total_intrs_to_slice) { + min_count = total_intrs_to_slice; + best_cpu = cpu; + } + } + return best_cpu; +} + +/* + * Choose an appropriate interrupt target CPU on a specified node. + * If which_subnode is SUBNODE_ANY, then subnode is not considered. + * Otherwise, the chosen CPU must be on the specified subnode. + */ +static cpuid_t +intr_cpu_choose_from_node(cnodeid_t cnode, int which_subnode) +{ + return(do_intr_cpu_choose(cnode, which_subnode)); +} + + +#ifndef CONFIG_IA64_SGI_IO +/* + * Convert a subnode vertex into a (cnodeid, which_subnode) pair. + * Return 0 on success, non-zero on failure. + */ +static int +subnodevertex_to_subnode(devfs_handle_t vhdl, cnodeid_t *cnodeidp, int *which_subnodep) +{ + arbitrary_info_t which_subnode; + cnodeid_t cnodeid; + + /* Try to grab subnode information */ + if (hwgraph_info_get_LBL(vhdl, INFO_LBL_CPUBUS, &which_subnode) != GRAPH_SUCCESS) + return(-1); + + /* On which node? */ + cnodeid = master_node_get(vhdl); + if (cnodeid == CNODEID_NONE) + return(-1); + + *which_subnodep = (int)which_subnode; + *cnodeidp = cnodeid; + return(0); /* success */ +} + +#endif /* CONFIG_IA64_SGI_IO */ + +/* Make it easy to identify subnode vertices in the hwgraph */ +void +mark_subnodevertex_as_subnode(devfs_handle_t vhdl, int which_subnode) +{ + graph_error_t rv; + + ASSERT(0 <= which_subnode); + ASSERT(which_subnode < NUM_SUBNODES); + + rv = hwgraph_info_add_LBL(vhdl, INFO_LBL_CPUBUS, (arbitrary_info_t)which_subnode); + ASSERT_ALWAYS(rv == GRAPH_SUCCESS); + + rv = hwgraph_info_export_LBL(vhdl, INFO_LBL_CPUBUS, sizeof(arbitrary_info_t)); + ASSERT_ALWAYS(rv == GRAPH_SUCCESS); +} + + +#ifndef CONFIG_IA64_SGI_IO +/* + * Given a device descriptor, extract interrupt target information and + * choose an appropriate CPU. Return CPU_NONE if we can't make sense + * out of the target information. + * TBD: Should this be considered platform-independent code? + */ +static cpuid_t +intr_target_from_desc(device_desc_t dev_desc, int favor_subnode) +{ + cpuid_t cpuid = CPU_NONE; + cnodeid_t cnodeid; + int which_subnode; + devfs_handle_t intr_target_dev; + + if ((intr_target_dev = device_desc_intr_target_get(dev_desc)) != GRAPH_VERTEX_NONE) { + /* + * A valid device was specified. If it's a particular + * CPU, then use that CPU as target. + */ + cpuid = cpuvertex_to_cpuid(intr_target_dev); + if (cpuid != CPU_NONE) + goto cpuchosen; + + /* If a subnode vertex was specified, pick a CPU on that subnode. */ + if (subnodevertex_to_subnode(intr_target_dev, &cnodeid, &which_subnode) == 0) { + cpuid = intr_cpu_choose_from_node(cnodeid, which_subnode); + goto cpuchosen; + } + + /* + * Otherwise, pick a CPU on the node that owns the + * specified target. Favor "favor_subnode", if specified. + */ + cnodeid = master_node_get(intr_target_dev); + if (cnodeid != CNODEID_NONE) { + cpuid = intr_cpu_choose_from_node(cnodeid, favor_subnode); + goto cpuchosen; + } + } + +cpuchosen: + return(cpuid); +} +#endif /* CONFIG_IA64_SGI_IO */ + + +#ifndef CONFIG_IA64_SGI_IO +/* + * Check if we had already visited this candidate cnode + */ +static void * +intr_cnode_seen(cnodeid_t candidate, + void *arg1, + void *arg2) +{ + int i; + cnodeid_t *visited_cnodes = (cnodeid_t *)arg1; + int *num_visited_cnodes = (int *)arg2; + + ASSERT(visited_cnodes); + ASSERT(*num_visited_cnodes <= numnodes); + for(i = 0 ; i < *num_visited_cnodes; i++) { + if (candidate == visited_cnodes[i]) + return(NULL); + } + return(visited_cnodes); +} + +#endif /* CONFIG_IA64_SGI_IO */ + + + +/* + * intr_bit_reserve_test(cpuid,which_subnode,cnode,req_bit,intr_resflags, + * owner_dev,intr_name,*resp_bit) + * Either cpuid is not CPU_NONE or cnodeid not CNODE_NONE but + * not both. + * 1. If cpuid is specified, this routine tests if this cpu can be a valid + * interrupt target candidate. + * 2. If cnodeid is specified, this routine tests if there is a cpu on + * this node which can be a valid interrupt target candidate. + * 3. If a valid interrupt target cpu candidate is found then an attempt at + * reserving an interrupt bit on the corresponding cnode is made. + * + * If steps 1 & 2 both fail or step 3 fails then we are not able to get a valid + * interrupt target cpu then routine returns CPU_NONE (failure) + * Otherwise routine returns cpuid of interrupt target (success) + */ +static cpuid_t +intr_bit_reserve_test(cpuid_t cpuid, + int favor_subnode, + cnodeid_t cnodeid, + int req_bit, + int intr_resflags, + devfs_handle_t owner_dev, + char *intr_name, + int *resp_bit) +{ + + ASSERT((cpuid==CPU_NONE) || (cnodeid==CNODEID_NONE)); + + if (cnodeid != CNODEID_NONE) { + /* Try to choose a interrupt cpu candidate */ + cpuid = intr_cpu_choose_from_node(cnodeid, favor_subnode); + } + + if (cpuid != CPU_NONE) { + /* Try to reserve an interrupt bit on the hub + * corresponding to the canidate cnode. If we + * are successful then we got a cpu which can + * act as an interrupt target for the io device. + * Otherwise we need to continue the search + * further. + */ + *resp_bit = do_intr_reserve_level(cpuid, + req_bit, + intr_resflags, + II_RESERVE, + owner_dev, + intr_name); + + if (*resp_bit >= 0) + /* The interrupt target specified was fine */ + return(cpuid); + } + return(CPU_NONE); +} +/* + * intr_heuristic(dev_t dev,device_desc_t dev_desc, + * int req_bit,int intr_resflags,dev_t owner_dev, + * char *intr_name,int *resp_bit) + * + * Choose an interrupt destination for an interrupt. + * dev is the device for which the interrupt is being set up + * dev_desc is a description of hardware and policy that could + * help determine where this interrupt should go + * req_bit is the interrupt bit requested + * (can be INTRCONNECT_ANY_BIT in which the first available + * interrupt bit is used) + * intr_resflags indicates whether we want to (un)reserve bit + * owner_dev is the owner device + * intr_name is the readable interrupt name + * resp_bit indicates whether we succeeded in getting the required + * action { (un)reservation} done + * negative value indicates failure + * + */ +/* ARGSUSED */ +cpuid_t +intr_heuristic(devfs_handle_t dev, + device_desc_t dev_desc, + int req_bit, + int intr_resflags, + devfs_handle_t owner_dev, + char *intr_name, + int *resp_bit) +{ + cpuid_t cpuid; /* possible intr targ*/ + cnodeid_t candidate; /* possible canidate */ +#ifndef BRINGUP + cnodeid_t visited_cnodes[MAX_NASIDS], /* nodes seen so far */ + center, /* node we are on */ + candidate; /* possible canidate */ + int num_visited_cnodes = 0; /* # nodes seen */ + + int radius = 1, /* start looking at the + * current node + */ + maxradius = physmem_maxradius(); + void *rv; +#endif /* BRINGUP */ + int which_subnode = SUBNODE_ANY; + +#if CONFIG_IA64_SGI_IO /* SN1 + pcibr Addressing Limitation */ + { + devfs_handle_t pconn_vhdl; + pcibr_soft_t pcibr_soft; + + /* + * This combination of SN1 and Bridge hardware has an odd "limitation". + * Due to the choice of addresses for PI0 and PI1 registers on SN1 + * and historical limitations in Bridge, Bridge is unable to + * send interrupts to both PI0 CPUs and PI1 CPUs -- we have + * to choose one set or the other. That choice is implicitly + * made when Bridge first attaches its error interrupt. After + * that point, all subsequent interrupts are restricted to the + * same PI number (though it's possible to send interrupts to + * the same PI number on a different node). + * + * Since neither SN1 nor Bridge designers are willing to admit a + * bug, we can't really call this a "workaround". It's a permanent + * solution for an SN1-specific and Bridge-specific hardware + * limitation that won't ever be lifted. + */ + if ((hwgraph_edge_get(dev, EDGE_LBL_PCI, &pconn_vhdl) == GRAPH_SUCCESS) && + ((pcibr_soft = pcibr_soft_get(pconn_vhdl)) != NULL)) { + /* + * We "know" that the error interrupt is the first + * interrupt set up by pcibr_attach. Send all interrupts + * on this bridge to the same subnode number. + */ + if (pcibr_soft->bsi_err_intr) { + which_subnode = cpuid_to_subnode(((hub_intr_t) pcibr_soft->bsi_err_intr)->i_cpuid); + } + } + } +#endif /* CONFIG_IA64_SGI_IO */ + +#ifndef CONFIG_IA64_SGI_IO + /* + * If an interrupt target was specified for this + * interrupt allocation, try to use it. + */ + if (dev_desc) { + + /* Try to see if the interrupt target specified in the + * device descriptor is a legal candidate. + */ + cpuid = intr_bit_reserve_test(intr_target_from_desc(dev_desc, which_subnode), + which_subnode, + CNODEID_NONE, + req_bit, + intr_resflags, + owner_dev, + intr_name, + resp_bit); + + if (cpuid != CPU_NONE) { + if (cpu_on_subnode(cpuid, which_subnode)) + return(cpuid); /* got a valid interrupt target */ + + printk("Override explicit interrupt targetting: %v (0x%x)\n", + owner_dev, owner_dev); + + intr_unreserve_level(cpuid, *resp_bit); + } + + /* Fall through on to the next step in the search for + * the interrupt candidate. + */ + + } +#endif /* CONFIG_IA64_SGI_IO */ + + /* Check if we can find a valid interrupt target candidate on + * the master node for the device. + */ + cpuid = intr_bit_reserve_test(CPU_NONE, + which_subnode, + master_node_get(dev), + req_bit, + intr_resflags, + owner_dev, + intr_name, + resp_bit); + + if (cpuid != CPU_NONE) { + if (cpu_on_subnode(cpuid, which_subnode)) + return(cpuid); /* got a valid interrupt target */ + else + intr_unreserve_level(cpuid, *resp_bit); + } + + printk("Cannot target interrupts to closest node(%d): %ld (0x%lx)\n", + master_node_get(dev),(long) owner_dev, (unsigned long)owner_dev); + + /* Fall through into the default algorithm + * (exhaustive-search-for-the-nearest-possible-interrupt-target) + * for finding the interrupt target + */ + +#ifndef BRINGUP + // Use of this algorithm is deferred until the supporting + // code has been implemented. + /* + * No valid interrupt specification exists. + * Try to find a node which is closest to the current node + * which can process interrupts from a device + */ + + center = cpuid_to_cnodeid(smp_processor_id()); + while (radius <= maxradius) { + + /* Try to find a node at the given radius and which + * we haven't seen already. + */ + rv = physmem_select_neighbor_node(center,radius,&candidate, + intr_cnode_seen, + (void *)visited_cnodes, + (void *)&num_visited_cnodes); + if (!rv) { + /* We have seen all the nodes at this particular radius + * Go on to the next radius level. + */ + radius++; + continue; + } + /* We are seeing this candidate cnode for the first time + */ + visited_cnodes[num_visited_cnodes++] = candidate; + + cpuid = intr_bit_reserve_test(CPU_NONE, + which_subnode, + candidate, + req_bit, + intr_resflags, + owner_dev, + intr_name, + resp_bit); + + if (cpuid != CPU_NONE) { + if (cpu_on_subnode(cpuid, which_subnode)) + return(cpuid); /* got a valid interrupt target */ + else + intr_unreserve_level(cpuid, *resp_bit); + } + } +#else /* BRINGUP */ + { + // Do a stupid round-robin assignment of the node. + static cnodeid_t last_node = 0; + + if (last_node > numnodes) last_node = 0; + for (candidate = last_node; candidate <= numnodes; candidate++) { + cpuid = intr_bit_reserve_test(CPU_NONE, + which_subnode, + candidate, + req_bit, + intr_resflags, + owner_dev, + intr_name, + resp_bit); + + if (cpuid != CPU_NONE) { + if (cpu_on_subnode(cpuid, which_subnode)) { + last_node++; + return(cpuid); /* got a valid interrupt target */ + } + else + intr_unreserve_level(cpuid, *resp_bit); + } + last_node++; + } + } +#endif + + printk("Cannot target interrupts to any close node: %ld (0x%lx)\n", + (long)owner_dev, (unsigned long)owner_dev); + + /* In the worst case try to allocate interrupt bits on the + * master processor's node. We may get here during error interrupt + * allocation phase when the topology matrix is not yet setup + * and hence cannot do an exhaustive search. + */ + ASSERT(cpu_allows_intr(master_procid)); + cpuid = intr_bit_reserve_test(master_procid, + which_subnode, + CNODEID_NONE, + req_bit, + intr_resflags, + owner_dev, + intr_name, + resp_bit); + + if (cpuid != CPU_NONE) { + if (cpu_on_subnode(cpuid, which_subnode)) + return(cpuid); + else + intr_unreserve_level(cpuid, *resp_bit); + } + + printk("Cannot target interrupts: %ld (0x%lx)\n", + (long)owner_dev, (unsigned long)owner_dev); + + return(CPU_NONE); /* Should never get here */ +} + + + + +#ifndef BRINGUP +/* + * Should never receive an exception while running on the idle + * stack. It IS possible to handle *interrupts* while on the + * idle stack, but a non-interrupt *exception* is a problem. + */ +void +idle_err(inst_t *epc, uint cause, void *fep, void *sp) +{ + eframe_t *ep = (eframe_t *)fep; + + if ((cause & CAUSE_EXCMASK) == EXC_IBE || + (cause & CAUSE_EXCMASK) == EXC_DBE) { + (void)dobuserre((eframe_t *)ep, epc, 0); + } + + /* XXX - This will have to change to deal with various SN errors. */ + panic( "exception on IDLE stack " + "ep:0x%x epc:0x%x cause:0x%w32x sp:0x%x badvaddr:0x%x", + ep, epc, cause, sp, getbadvaddr()); + /* NOTREACHED */ +} + + +/* + * earlynofault - handle very early global faults - usually just while + * sizing memory + * Returns: 1 if should do nofault + * 0 if not + */ +/* ARGSUSED */ +int +earlynofault(eframe_t *ep, uint code) +{ + switch(code) { + case EXC_DBE: + return(1); + default: + return(0); + } +} + + + +/* ARGSUSED */ +static void +cpuintr(void *arg1, void *arg2) +{ +#if RTE + static int rte_intrdebug = 1; +#endif + /* + * Frame Scheduler + */ + LOG_TSTAMP_EVENT(RTMON_INTR, TSTAMP_EV_CPUINTR, NULL, NULL, + NULL, NULL); + + /* + * Hardware clears the IO interrupts, but we need to clear software- + * generated interrupts. + */ + LOCAL_HUB_CLR_INTR(CPU_ACTION_A + cputolocalslice(cpuid())); + +#if 0 + /* XXX - Handle error interrupts. */ + if (error_intr_reason) + error_intr(); +#endif /* 0 */ + + /* + * If we're headed for panicspin and it is due to a NMI, save the + * eframe in the NMI area + */ + if (private.p_va_panicspin && nmied) { + caddr_t nmi_save_area; + + nmi_save_area = (caddr_t) (TO_UNCAC(TO_NODE( + cputonasid(cpuid()), IP27_NMI_EFRAME_OFFSET)) + + cputoslice(cpuid()) * IP27_NMI_EFRAME_SIZE); + bcopy((caddr_t) arg2, nmi_save_area, sizeof(eframe_t)); + } + + doacvec(); +#if RTE + if (private.p_flags & PDAF_ISOLATED && !rte_intrdebug) + goto end_cpuintr; +#endif + doactions(); +#if RTE +end_cpuintr: +#endif + LOG_TSTAMP_EVENT(RTMON_INTR, TSTAMP_EV_INTREXIT, TSTAMP_EV_CPUINTR, NULL, NULL, NULL); +} + +void +install_cpuintr(cpuid_t cpu) +{ + int intr_bit = CPU_ACTION_A + cputolocalslice(cpu); + + if (intr_connect_level(cpu, intr_bit, INTPEND0_MAXMASK, + (intr_func_t) cpuintr, NULL, NULL)) + panic("install_cpuintr: Can't connect interrupt."); +} +#endif /* BRINGUP */ + +#ifdef DEBUG_INTR_TSTAMP +/* We allocate an array, but only use element number 64. This guarantees that + * the entry is in a cacheline by itself. + */ +#define DINTR_CNTIDX 32 +#define DINTR_TSTAMP1 48 +#define DINTR_TSTAMP2 64 +volatile long long dintr_tstamp_cnt[128]; +int dintr_debug_output=0; +extern void idbg_tstamp_debug(void); +#ifdef SPLDEBUG +extern void idbg_splx_log(int); +#endif +#if DEBUG_INTR_TSTAMP_DEBUG +int dintr_enter_symmon=1000; /* 1000 microseconds is 1 millisecond */ +#endif + +#ifndef BRINGUP +/* ARGSUSED */ +static void +cpulatintr(void *arg) +{ + /* + * Hardware only clears IO interrupts so we have to clear our level + * here. + */ + LOCAL_HUB_CLR_INTR(CPU_INTRLAT_A + cputolocalslice(cpuid())); + +#if DEBUG_INTR_TSTAMP_DEBUG + dintr_tstamp_cnt[DINTR_TSTAMP2] = GET_LOCAL_RTC; + if ((dintr_tstamp_cnt[DINTR_TSTAMP2] - dintr_tstamp_cnt[DINTR_TSTAMP1]) + > dintr_enter_symmon) { +#ifdef SPLDEBUG + extern int spldebug_log_off; + + spldebug_log_off = 1; +#endif /* SPLDEBUG */ + debug("ring"); +#ifdef SPLDEBUG + spldebug_log_off = 0; +#endif /* SPLDEBUG */ + } +#endif + dintr_tstamp_cnt[DINTR_CNTIDX]++; + + return; +} + +static int install_cpulat_first=0; + +void +install_cpulatintr(cpuid_t cpu) +{ + int intr_bit; + devfs_handle_t cpuv = cpuid_to_vertex(cpu); + + intr_bit = CPU_INTRLAT_A + cputolocalslice(cpu); + if (intr_bit != intr_reserve_level(cpu, intr_bit, II_THREADED, + cpuv, "intrlat")) + panic( "install_cpulatintr: Can't reserve interrupt."); + + if (intr_connect_level(cpu, intr_bit, INTPEND0_MAXMASK, + cpulatintr, NULL, NULL)) + panic( "install_cpulatintr: Can't connect interrupt."); + + if (!install_cpulat_first) { + install_cpulat_first++; + idbg_addfunc("tstamp_debug", (void (*)())idbg_tstamp_debug); +#if defined(SPLDEBUG) || defined(SPLDEBUG_CPU_EVENTS) + idbg_addfunc("splx_log", (void (*)())idbg_splx_log); +#endif /* SPLDEBUG || SPLDEBUG_CPU_EVENTS */ + } +} +#endif /* BRINGUP */ + +#endif /* DEBUG_INTR_TSTAMP */ + +#ifndef BRINGUP +/* ARGSUSED */ +static void +dbgintr(void *arg) +{ + /* + * Hardware only clears IO interrupts so we have to clear our level + * here. + */ + LOCAL_HUB_CLR_INTR(N_INTPEND_BITS + DEBUG_INTR_A + cputolocalslice(cpuid())); + + debug("zing"); + return; +} + + +void +install_dbgintr(cpuid_t cpu) +{ + int intr_bit; + devfs_handle_t cpuv = cpuid_to_vertex(cpu); + + intr_bit = N_INTPEND_BITS + DEBUG_INTR_A + cputolocalslice(cpu); + if (intr_bit != intr_reserve_level(cpu, intr_bit, 1, cpuv, "DEBUG")) + panic("install_dbgintr: Can't reserve interrupt. " + " intr_bit %d" ,intr_bit); + + if (intr_connect_level(cpu, intr_bit, INTPEND1_MAXMASK, + dbgintr, NULL, NULL)) + panic("install_dbgintr: Can't connect interrupt."); + +#ifdef DEBUG_INTR_TSTAMP + /* Set up my interrupt latency test interrupt */ + install_cpulatintr(cpu); +#endif +} + +/* ARGSUSED */ +static void +tlbintr(void *arg) +{ + extern void tlbflush_rand(void); + + /* + * Hardware only clears IO interrupts so we have to clear our level + * here. + */ + LOCAL_HUB_CLR_INTR(N_INTPEND_BITS + TLB_INTR_A + cputolocalslice(cpuid())); + + tlbflush_rand(); + return; +} + + +void +install_tlbintr(cpuid_t cpu) +{ + int intr_bit; + devfs_handle_t cpuv = cpuid_to_vertex(cpu); + + intr_bit = N_INTPEND_BITS + TLB_INTR_A + cputolocalslice(cpu); + if (intr_bit != intr_reserve_level(cpu, intr_bit, 1, cpuv, "DEBUG")) + panic("install_tlbintr: Can't reserve interrupt. " + " intr_bit %d" ,intr_bit); + + if (intr_connect_level(cpu, intr_bit, INTPEND1_MAXMASK, + tlbintr, NULL, NULL)) + panic("install_tlbintr: Can't connect interrupt."); + +} + + +/* + * Send an interrupt to all nodes. Don't panic if we get an error. + * Returns 1 if any exceptions occurred. + */ +int +protected_broadcast(hubreg_t intrbit) +{ + nodepda_t *npdap = private.p_nodepda; + int byte, bit, sn; + int error = 0; + + extern int _wbadaddr_val(volatile void *, int, volatile int *); + + /* Send rather than clear an interrupt. */ + intrbit |= 0x100; + + for (byte = 0; byte < NASID_MASK_BYTES; byte++) { + for (bit = 0; bit < 8; bit++) { + if (npdap->nasid_mask[byte] & (1 << bit)) { + nasid_t nasid = byte * 8 + bit; + for (sn=0; sn<NUM_SUBNODES; sn++) { + error += _wbadaddr_val(REMOTE_HUB_PI_ADDR(nasid, + sn, PI_INT_PEND_MOD), + sizeof(hubreg_t), + (volatile int *)&intrbit); + } + } + } + } + + return error; +} + + +/* + * Poll the interrupt register to see if another cpu has asked us + * to drop into the debugger (without lowering spl). + */ +void +chkdebug(void) +{ + if (LOCAL_HUB_L(PI_INT_PEND1) & (1L << (DEBUG_INTR_A + cputolocalslice(cpuid())))) + dbgintr((void *)NULL); +} + + +/* + * Install special graphics interrupt. + */ +void +install_gfxintr(cpuid_t cpu, ilvl_t swlevel, intr_func_t intr_func, void *intr_arg) +{ + int intr_bit = GFX_INTR_A + cputolocalslice(cpu); + + if (intr_connect_level(cpu, intr_bit, swlevel, + intr_func, intr_arg, NULL)) + panic("install_gfxintr: Can't connect interrupt."); +} + + +/* + * Install page migration interrupt handler. + */ +void +hub_migrintr_init(cnodeid_t cnode) +{ + cpuid_t cpu = cnodetocpu(cnode); + int intr_bit = INT_PEND0_BASELVL + PG_MIG_INTR; + + if (numnodes == 1){ + /* + * No migration with just one node.. + */ + return; + } + + if (cpu != -1) { + if (intr_connect_level(cpu, intr_bit, 0, + (intr_func_t) migr_intr_handler, 0, (intr_func_t) migr_intr_prologue_handler)) + panic( "hub_migrintr_init: Can't connect interrupt."); + } +} + + +/* + * Cause all CPUs to stop by sending them each a DEBUG interrupt. + * Parameter is actually a (cpumask_t *). + */ +void +debug_stop_all_cpus(void *stoplist) +{ + int cpu; + ulong level; + + for (cpu=0; cpu<maxcpus; cpu++) { + if (cpu == cpuid()) + continue; + if (!cpu_enabled(cpu)) + continue; + /* "-1" is the old style parameter OR could be the new style + * if no-one is currently stopped. We only stop the + * requested cpus, the others are already stopped (probably + * at a breakpoint). + */ + + if (((cpumask_t *)stoplist != (cpumask_t *)-1LL) && + (!CPUMASK_TSTB(*(cpumask_t*)stoplist, cpu))) + continue; + + /* + * CPU lslice A gets level DEBUG_INTR_A + * CPU lslice B gets level DEBUG_INTR_B + */ + level = DEBUG_INTR_A + LOCALCPU(get_cpu_slice(cpu)); + /* + * Convert the compact hub number to the NASID to get the + * correct part of the address space. Then set the interrupt + * bit associated with the CPU we want to send the interrupt + * to. + */ + REMOTE_CPU_SEND_INTR(cpu, N_INTPEND_BITS + level); + + } +} + + +struct hardwired_intr_s { + signed char level; + int flags; + char *name; +} const hardwired_intr[] = { + { INT_PEND0_BASELVL + RESERVED_INTR, 0, "Reserved" }, + { INT_PEND0_BASELVL + GFX_INTR_A, 0, "Gfx A" }, + { INT_PEND0_BASELVL + GFX_INTR_B, 0, "Gfx B" }, + { INT_PEND0_BASELVL + PG_MIG_INTR, II_THREADED, "Migration" }, +#if defined(SN1) && !defined(DIRECT_L1_CONSOLE) + { INT_PEND0_BASELVL + UART_INTR, II_THREADED, "Bedrock/L1" }, +#else + { INT_PEND0_BASELVL + UART_INTR, 0, "Hub I2C" }, +#endif + { INT_PEND0_BASELVL + CC_PEND_A, 0, "Crosscall A" }, + { INT_PEND0_BASELVL + CC_PEND_B, 0, "Crosscall B" }, + { INT_PEND0_BASELVL + MSC_MESG_INTR, II_THREADED, "MSC Message" }, + { INT_PEND0_BASELVL + CPU_ACTION_A, 0, "CPU Action A" }, + { INT_PEND0_BASELVL + CPU_ACTION_B, 0, "CPU Action B" }, + { INT_PEND1_BASELVL + IO_ERROR_INTR, II_ERRORINT, "IO Error" }, + { INT_PEND1_BASELVL + CLK_ERR_INTR, II_ERRORINT, "Clock Error" }, + { INT_PEND1_BASELVL + COR_ERR_INTR_A, II_ERRORINT, "Correctable Error A" }, + { INT_PEND1_BASELVL + COR_ERR_INTR_B, II_ERRORINT, "Correctable Error B" }, + { INT_PEND1_BASELVL + MD_COR_ERR_INTR, II_ERRORINT, "MD Correct. Error" }, + { INT_PEND1_BASELVL + NI_ERROR_INTR, II_ERRORINT, "NI Error" }, + { INT_PEND1_BASELVL + NI_BRDCAST_ERR_A, II_ERRORINT, "Remote NI Error"}, + { INT_PEND1_BASELVL + NI_BRDCAST_ERR_B, II_ERRORINT, "Remote NI Error"}, + { INT_PEND1_BASELVL + MSC_PANIC_INTR, II_ERRORINT, "MSC Panic" }, + { INT_PEND1_BASELVL + LLP_PFAIL_INTR_A, II_ERRORINT, "LLP Pfail WAR" }, + { INT_PEND1_BASELVL + LLP_PFAIL_INTR_B, II_ERRORINT, "LLP Pfail WAR" }, +#ifdef SN1 + { INT_PEND1_BASELVL + NACK_INT_A, 0, "CPU A Nack count == NACK_CMP" }, + { INT_PEND1_BASELVL + NACK_INT_B, 0, "CPU B Nack count == NACK_CMP" }, + { INT_PEND1_BASELVL + LB_ERROR, 0, "Local Block Error" }, + { INT_PEND1_BASELVL + XB_ERROR, 0, "Local XBar Error" }, +#endif /* SN1 */ + { -1, 0, (char *)NULL} +}; + +/* + * Reserve all of the hardwired interrupt levels so they're not used as + * general purpose bits later. + */ +void +intr_reserve_hardwired(cnodeid_t cnode) +{ + cpuid_t cpu; + int level; + int i; + char subnode_done[NUM_SUBNODES]; + + cpu = cnodetocpu(cnode); + if (cpu == CPU_NONE) { + printk("Node %d has no CPUs", cnode); + return; + } + + for (i=0; i<NUM_SUBNODES; i++) + subnode_done[i] = 0; + + for (; cpu<maxcpus && cpu_enabled(cpu) && cputocnode(cpu) == cnode; cpu++) { + int which_subnode = cpuid_to_subnode(cpu); + if (subnode_done[which_subnode]) + continue; + subnode_done[which_subnode] = 1; + + for (i = 0; hardwired_intr[i].level != -1; i++) { + level = hardwired_intr[i].level; + + if (level != intr_reserve_level(cpu, level, + hardwired_intr[i].flags, + (devfs_handle_t) NULL, + hardwired_intr[i].name)) + panic("intr_reserve_hardwired: Can't reserve level %d.", level); + } + } +} + +#endif /* BRINGUP */ + +/* + * Check and clear interrupts. + */ +/*ARGSUSED*/ +static void +intr_clear_bits(nasid_t nasid, volatile hubreg_t *pend, int base_level, + char *name) +{ + volatile hubreg_t bits; + int i; + + /* Check pending interrupts */ + if ((bits = HUB_L(pend)) != 0) { + for (i = 0; i < N_INTPEND_BITS; i++) { + if (bits & (1 << i)) { +#ifdef INTRDEBUG + printk( "Nasid %d interrupt bit %d set in %s", + nasid, i, name); +#endif + LOCAL_HUB_CLR_INTR(base_level + i); + } + } + } +} + +/* + * Clear out our interrupt registers. + */ +void +intr_clear_all(nasid_t nasid) +{ + int sn; + + for(sn=0; sn<NUM_SUBNODES; sn++) { + REMOTE_HUB_PI_S(nasid, sn, PI_INT_MASK0_A, 0); + REMOTE_HUB_PI_S(nasid, sn, PI_INT_MASK0_B, 0); + REMOTE_HUB_PI_S(nasid, sn, PI_INT_MASK1_A, 0); + REMOTE_HUB_PI_S(nasid, sn, PI_INT_MASK1_B, 0); + + intr_clear_bits(nasid, REMOTE_HUB_PI_ADDR(nasid, sn, PI_INT_PEND0), + INT_PEND0_BASELVL, "INT_PEND0"); + intr_clear_bits(nasid, REMOTE_HUB_PI_ADDR(nasid, sn, PI_INT_PEND1), + INT_PEND1_BASELVL, "INT_PEND1"); + } +} + +/* + * Dump information about a particular interrupt vector. + */ +static void +dump_vector(intr_info_t *info, intr_vector_t *vector, int bit, hubreg_t ip, + hubreg_t ima, hubreg_t imb, void (*pf)(char *, ...)) +{ + hubreg_t value = 1LL << bit; + + pf(" Bit %02d: %s: func 0x%x arg 0x%x prefunc 0x%x\n", + bit, info->ii_name, + vector->iv_func, vector->iv_arg, vector->iv_prefunc); + pf(" vertex 0x%x %s%s", + info->ii_owner_dev, + ((info->ii_flags) & II_RESERVE) ? "R" : "U", + ((info->ii_flags) & II_INUSE) ? "C" : "-"); + pf("%s%s%s%s", + ip & value ? "P" : "-", + ima & value ? "A" : "-", + imb & value ? "B" : "-", + ((info->ii_flags) & II_ERRORINT) ? "E" : "-"); + pf("\n"); +} + + +/* + * Dump information about interrupt vector assignment. + */ +void +intr_dumpvec(cnodeid_t cnode, void (*pf)(char *, ...)) +{ + nodepda_t *npda; + int ip, sn, bit; + intr_vecblk_t *dispatch; + hubreg_t ipr, ima, imb; + nasid_t nasid; + + if ((cnode < 0) || (cnode >= numnodes)) { + pf("intr_dumpvec: cnodeid out of range: %d\n", cnode); + return ; + } + + nasid = COMPACT_TO_NASID_NODEID(cnode); + + if (nasid == INVALID_NASID) { + pf("intr_dumpvec: Bad cnodeid: %d\n", cnode); + return ; + } + + + npda = NODEPDA(cnode); + + for (sn = 0; sn < NUM_SUBNODES; sn++) { + for (ip = 0; ip < 2; ip++) { + dispatch = ip ? &(SNPDA(npda,sn)->intr_dispatch1) : &(SNPDA(npda,sn)->intr_dispatch0); + ipr = REMOTE_HUB_PI_L(nasid, sn, ip ? PI_INT_PEND1 : PI_INT_PEND0); + ima = REMOTE_HUB_PI_L(nasid, sn, ip ? PI_INT_MASK1_A : PI_INT_MASK0_A); + imb = REMOTE_HUB_PI_L(nasid, sn, ip ? PI_INT_MASK1_B : PI_INT_MASK0_B); + + pf("Node %d INT_PEND%d:\n", cnode, ip); + + if (dispatch->ithreads_enabled) + pf(" Ithreads enabled\n"); + else + pf(" Ithreads disabled\n"); + pf(" vector_count = %d, vector_state = %d\n", + dispatch->vector_count, + dispatch->vector_state); + pf(" CPU A count %d, CPU B count %d\n", + dispatch->cpu_count[0], + dispatch->cpu_count[1]); + pf(" &vector_lock = 0x%x\n", + &(dispatch->vector_lock)); + for (bit = 0; bit < N_INTPEND_BITS; bit++) { + if ((dispatch->info[bit].ii_flags & II_RESERVE) || + (ipr & (1L << bit))) { + dump_vector(&(dispatch->info[bit]), + &(dispatch->vectors[bit]), + bit, ipr, ima, imb, pf); + } + } + pf("\n"); + } + } +} + |