summaryrefslogtreecommitdiffstats
path: root/include/asm-alpha/pgtable.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-alpha/pgtable.h')
-rw-r--r--include/asm-alpha/pgtable.h423
1 files changed, 423 insertions, 0 deletions
diff --git a/include/asm-alpha/pgtable.h b/include/asm-alpha/pgtable.h
new file mode 100644
index 000000000..51425af46
--- /dev/null
+++ b/include/asm-alpha/pgtable.h
@@ -0,0 +1,423 @@
+#ifndef _ALPHA_PGTABLE_H
+#define _ALPHA_PGTABLE_H
+
+/*
+ * This file contains the functions and defines necessary to modify and use
+ * the alpha page table tree.
+ *
+ * This hopefully works with any standard alpha page-size, as defined
+ * in <asm/page.h> (currently 8192).
+ */
+
+/* PMD_SHIFT determines the size of the area a second-level page table can map */
+#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+/*
+ * entries per page directory level: the alpha is three-level, with
+ * all levels having a one-page page table.
+ *
+ * The PGD is special: the last entry is reserved for self-mapping.
+ */
+#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3))
+#define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3))
+#define PTRS_PER_PGD ((1UL << (PAGE_SHIFT-3))-1)
+
+/* the no. of pointers that fit on a page: this will go away */
+#define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3))
+
+#define VMALLOC_START 0xFFFFFE0000000000
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+
+/*
+ * OSF/1 PAL-code-imposed page table bits
+ */
+#define _PAGE_VALID 0x0001
+#define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */
+#define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */
+#define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */
+#define _PAGE_ASM 0x0010
+#define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */
+#define _PAGE_URE 0x0200 /* xxx */
+#define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */
+#define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */
+
+/* .. and these are ours ... */
+#define _PAGE_COW 0x10000
+#define _PAGE_DIRTY 0x20000
+#define _PAGE_ACCESSED 0x40000
+
+/*
+ * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly
+ * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
+ * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
+ * the KRE/URE bits to watch for it. That way we don't need to overload the
+ * KWE/UWE bits with both handling dirty and accessed.
+ *
+ * Note that the kernel uses the accessed bit just to check whether to page
+ * out a page or not, so it doesn't have to be exact anyway.
+ */
+
+#define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
+#define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
+
+#define _PFN_MASK 0xFFFFFFFF00000000
+
+#define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
+#define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
+
+/*
+ * All the normal masks have the "page accessed" bits on, as any time they are used,
+ * the page is accessed. They are cleared only by the page-out routines
+ */
+#define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
+#define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS)
+#define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW | _PAGE_COW)
+#define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
+#define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
+
+#define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
+
+#define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:(_PAGE_FOW | _PAGE_COW)))
+#define _PAGE_S(x) _PAGE_NORMAL(x)
+
+/*
+ * The hardware can handle write-only mappings, but as the alpha
+ * architecture does byte-wide writes with a read-modify-write
+ * sequence, it's not practical to have write-without-read privs.
+ * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
+ * arch/alpha/mm/fault.c)
+ */
+ /* xwr */
+#define __P000 _PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
+#define __P001 _PAGE_P(_PAGE_FOE | _PAGE_FOW)
+#define __P010 _PAGE_P(_PAGE_FOE)
+#define __P011 _PAGE_P(_PAGE_FOE)
+#define __P100 _PAGE_P(_PAGE_FOW | _PAGE_FOR)
+#define __P101 _PAGE_P(_PAGE_FOW)
+#define __P110 _PAGE_P(0)
+#define __P111 _PAGE_P(0)
+
+#define __S000 _PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
+#define __S001 _PAGE_S(_PAGE_FOE | _PAGE_FOW)
+#define __S010 _PAGE_S(_PAGE_FOE)
+#define __S011 _PAGE_S(_PAGE_FOE)
+#define __S100 _PAGE_S(_PAGE_FOW | _PAGE_FOR)
+#define __S101 _PAGE_S(_PAGE_FOW)
+#define __S110 _PAGE_S(0)
+#define __S111 _PAGE_S(0)
+
+/*
+ * BAD_PAGETABLE is used when we need a bogus page-table, while
+ * BAD_PAGE is used for a bogus page.
+ *
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern pte_t __bad_page(void);
+extern pmd_t * __bad_pagetable(void);
+
+extern unsigned long __zero_page(void);
+
+#define BAD_PAGETABLE __bad_pagetable()
+#define BAD_PAGE __bad_page()
+#define ZERO_PAGE __zero_page()
+
+/* number of bits that fit into a memory pointer */
+#define BITS_PER_PTR (8*sizeof(unsigned long))
+
+/* to align the pointer to a pointer address */
+#define PTR_MASK (~(sizeof(void*)-1))
+
+/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
+#define SIZEOF_PTR_LOG2 3
+
+/* to find an entry in a page-table */
+#define PAGE_PTR(address) \
+ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
+
+extern unsigned long high_memory;
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
+{ pte_t pte; pte_val(pte) = ((page-PAGE_OFFSET) << (32-PAGE_SHIFT)) | pgprot_val(pgprot); return pte; }
+
+extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
+
+extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
+{ pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
+
+extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
+{ pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
+
+extern inline unsigned long pte_page(pte_t pte)
+{ return PAGE_OFFSET + ((pte_val(pte) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
+
+extern inline unsigned long pmd_page(pmd_t pmd)
+{ return PAGE_OFFSET + ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
+
+extern inline unsigned long pgd_page(pgd_t pgd)
+{ return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
+
+extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
+extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; }
+extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)] != 1; }
+extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
+extern inline void pte_reuse(pte_t * ptep)
+{
+ if (!(mem_map[MAP_NR(ptep)] & MAP_PAGE_RESERVED))
+ mem_map[MAP_NR(ptep)]++;
+}
+
+extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
+extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE || pmd_page(pmd) > high_memory; }
+extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; }
+extern inline int pmd_inuse(pmd_t *pmdp) { return mem_map[MAP_NR(pmdp)] != 1; }
+extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; }
+extern inline void pmd_reuse(pmd_t * pmdp)
+{
+ if (!(mem_map[MAP_NR(pmdp)] & MAP_PAGE_RESERVED))
+ mem_map[MAP_NR(pmdp)]++;
+}
+
+extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); }
+extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE || pgd_page(pgd) > high_memory; }
+extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; }
+extern inline int pgd_inuse(pgd_t *pgdp) { return mem_map[MAP_NR(pgdp)] != 1; }
+extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; }
+extern inline void pgd_reuse(pgd_t * pgdp)
+{
+ if (!(mem_map[MAP_NR(pgdp)] & MAP_PAGE_RESERVED))
+ mem_map[MAP_NR(pgdp)]++;
+}
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+extern inline int pte_read(pte_t pte) { return !(pte_val(pte) & _PAGE_FOR); }
+extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); }
+extern inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_FOE); }
+extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
+extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
+extern inline int pte_cow(pte_t pte) { return pte_val(pte) & _PAGE_COW; }
+
+extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; }
+extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOR; return pte; }
+extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOE; return pte; }
+extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
+extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
+extern inline pte_t pte_uncow(pte_t pte) { pte_val(pte) &= ~_PAGE_COW; return pte; }
+extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; }
+extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) &= ~_PAGE_FOR; return pte; }
+extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_FOE; return pte; }
+extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; }
+extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; }
+extern inline pte_t pte_mkcow(pte_t pte) { pte_val(pte) |= _PAGE_COW; return pte; }
+
+/*
+ * To set the page-dir. Note the self-mapping in the last entry
+ *
+ * Also note that if we update the current process ptbr, we need to
+ * update the PAL-cached ptbr value as well.. There doesn't seem to
+ * be any "wrptbr" PAL-insn, but we can do a dummy swpctx to ourself
+ * instead.
+ */
+extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir)
+{
+ pgd_val(pgdir[PTRS_PER_PGD]) = pte_val(mk_pte((unsigned long) pgdir, PAGE_KERNEL));
+ tsk->tss.ptbr = ((unsigned long) pgdir - PAGE_OFFSET) >> PAGE_SHIFT;
+ if (tsk == current)
+ __asm__ __volatile__(
+ "bis %0,%0,$16\n\t"
+ "call_pal %1"
+ : /* no outputs */
+ : "r" (&tsk->tss), "i" (PAL_swpctx)
+ : "$0", "$1", "$16", "$22", "$23", "$24", "$25");
+}
+
+#define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
+
+/* to find an entry in a page-table-directory. */
+extern inline pgd_t * pgd_offset(struct task_struct * tsk, unsigned long address)
+{
+ return (pgd_t *) ((tsk->tss.ptbr << PAGE_SHIFT) + PAGE_OFFSET) +
+ ((address >> PGDIR_SHIFT) & (PTRS_PER_PAGE - 1));
+}
+
+/* Find an entry in the second-level page table.. */
+extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
+{
+ return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
+}
+
+/* Find an entry in the third-level page table.. */
+extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
+{
+ return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
+}
+
+/*
+ * Allocate and free page tables. The xxx_kernel() versions are
+ * used to allocate a kernel page table - this turns on ASN bits
+ * if any, and marks the page tables reserved.
+ */
+extern inline void pte_free_kernel(pte_t * pte)
+{
+ mem_map[MAP_NR(pte)] = 1;
+ free_page((unsigned long) pte);
+}
+
+extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
+{
+ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+ if (pmd_none(*pmd)) {
+ pte_t *page = (pte_t *) get_free_page(GFP_KERNEL);
+ if (pmd_none(*pmd)) {
+ if (page) {
+ pmd_set(pmd, page);
+ mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED;
+ return page + address;
+ }
+ pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
+ return NULL;
+ }
+ free_page((unsigned long) page);
+ }
+ if (pmd_bad(*pmd)) {
+ printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
+ pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pte_t *) pmd_page(*pmd) + address;
+}
+
+extern inline void pmd_free_kernel(pmd_t * pmd)
+{
+ mem_map[MAP_NR(pmd)] = 1;
+ free_page((unsigned long) pmd);
+}
+
+extern inline pmd_t * pmd_alloc_kernel(pgd_t *pgd, unsigned long address)
+{
+ address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
+ if (pgd_none(*pgd)) {
+ pmd_t *page = (pmd_t *) get_free_page(GFP_KERNEL);
+ if (pgd_none(*pgd)) {
+ if (page) {
+ pgd_set(pgd, page);
+ mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED;
+ return page + address;
+ }
+ pgd_set(pgd, BAD_PAGETABLE);
+ return NULL;
+ }
+ free_page((unsigned long) page);
+ }
+ if (pgd_bad(*pgd)) {
+ printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd));
+ pgd_set(pgd, BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pmd_t *) pgd_page(*pgd) + address;
+}
+
+extern inline void pte_free(pte_t * pte)
+{
+ free_page((unsigned long) pte);
+}
+
+extern inline pte_t * pte_alloc(pmd_t *pmd, unsigned long address)
+{
+ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+ if (pmd_none(*pmd)) {
+ pte_t *page = (pte_t *) get_free_page(GFP_KERNEL);
+ if (pmd_none(*pmd)) {
+ if (page) {
+ pmd_set(pmd, page);
+ return page + address;
+ }
+ pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
+ return NULL;
+ }
+ free_page((unsigned long) page);
+ }
+ if (pmd_bad(*pmd)) {
+ printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
+ pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pte_t *) pmd_page(*pmd) + address;
+}
+
+extern inline void pmd_free(pmd_t * pmd)
+{
+ free_page((unsigned long) pmd);
+}
+
+extern inline pmd_t * pmd_alloc(pgd_t *pgd, unsigned long address)
+{
+ address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
+ if (pgd_none(*pgd)) {
+ pmd_t *page = (pmd_t *) get_free_page(GFP_KERNEL);
+ if (pgd_none(*pgd)) {
+ if (page) {
+ pgd_set(pgd, page);
+ return page + address;
+ }
+ pgd_set(pgd, BAD_PAGETABLE);
+ return NULL;
+ }
+ free_page((unsigned long) page);
+ }
+ if (pgd_bad(*pgd)) {
+ printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd));
+ pgd_set(pgd, BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pmd_t *) pgd_page(*pgd) + address;
+}
+
+extern inline void pgd_free(pgd_t * pgd)
+{
+ free_page((unsigned long) pgd);
+}
+
+extern inline pgd_t * pgd_alloc(void)
+{
+ return (pgd_t *) get_free_page(GFP_KERNEL);
+}
+
+extern pgd_t swapper_pg_dir[1024];
+
+/*
+ * The alpha doesn't have any external MMU info: the kernel page
+ * tables contain all the necessary information.
+ */
+extern inline void update_mmu_cache(struct vm_area_struct * vma,
+ unsigned long address, pte_t pte)
+{
+}
+
+/*
+ * Non-present pages: high 24 bits are offset, next 8 bits type,
+ * low 32 bits zero..
+ */
+extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
+{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
+
+#define SWP_TYPE(entry) (((entry) >> 32) & 0xff)
+#define SWP_OFFSET(entry) ((entry) >> 40)
+#define SWP_ENTRY(type,offset) pte_val(mk_swap_pte((type),(offset)))
+
+#endif /* _ALPHA_PGTABLE_H */