summaryrefslogtreecommitdiffstats
path: root/include/asm-m68k/pgtable.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-m68k/pgtable.h')
-rw-r--r--include/asm-m68k/pgtable.h741
1 files changed, 741 insertions, 0 deletions
diff --git a/include/asm-m68k/pgtable.h b/include/asm-m68k/pgtable.h
new file mode 100644
index 000000000..429a68938
--- /dev/null
+++ b/include/asm-m68k/pgtable.h
@@ -0,0 +1,741 @@
+#ifndef _M68K_PGTABLE_H
+#define _M68K_PGTABLE_H
+
+#include<asm/setup.h>
+
+#ifndef __ASSEMBLY__
+
+/*
+ * This file contains the functions and defines necessary to modify and use
+ * the m68k page table tree.
+ */
+
+/*
+ * flush all atc entries (user-space entries only for the 680[46]0).
+ */
+static inline void __flush_tlb(void)
+{
+ if (CPU_IS_040_OR_060)
+ __asm__ __volatile__(".word 0xf510\n"::); /* pflushan */
+ else
+ __asm__ __volatile__("pflusha\n"::);
+}
+
+static inline void __flush_tlb_one(unsigned long addr)
+{
+ if (CPU_IS_040_OR_060) {
+ register unsigned long a0 __asm__ ("a0") = addr;
+ __asm__ __volatile__(".word 0xf508" /* pflush (%a0) */
+ : : "a" (a0));
+ } else
+ __asm__ __volatile__("pflush #0,#0,(%0)" : : "a" (addr));
+}
+
+#define flush_tlb() __flush_tlb()
+
+/*
+ * flush all atc entries (both kernel and user-space entries).
+ */
+static inline void flush_tlb_all(void)
+{
+ if (CPU_IS_040_OR_060)
+ __asm__ __volatile__(".word 0xf518\n"::); /* pflusha */
+ else
+ __asm__ __volatile__("pflusha\n"::);
+}
+
+static inline void flush_tlb_mm(struct mm_struct *mm)
+{
+ if (mm == current->mm)
+ __flush_tlb();
+}
+
+static inline void flush_tlb_page(struct vm_area_struct *vma,
+ unsigned long addr)
+{
+ if (vma->vm_mm == current->mm)
+ __flush_tlb_one(addr);
+}
+
+static inline void flush_tlb_range(struct mm_struct *mm,
+ unsigned long start, unsigned long end)
+{
+ if (mm == current->mm)
+ __flush_tlb();
+}
+
+/* Certain architectures need to do special things when pte's
+ * within a page table are directly modified. Thus, the following
+ * hook is made available.
+ */
+#define set_pte(pteptr, pteval) do{ \
+ ((*(pteptr)) = (pteval)); \
+ if (CPU_IS_060) \
+ __asm__ __volatile__(".word 0xf518\n"::); /* pflusha */ \
+ } while(0)
+
+
+/* PMD_SHIFT determines the size of the area a second-level page table can map */
+#define PMD_SHIFT 22
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT 25
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+/*
+ * entries per page directory level: the m68k is configured as three-level,
+ * so we do have PMD level physically.
+ */
+#define PTRS_PER_PTE 1024
+#define PTRS_PER_PMD 8
+#define PTRS_PER_PGD 128
+
+/* the no. of pointers that fit on a page: this will go away */
+#define PTRS_PER_PAGE (PAGE_SIZE/sizeof(void*))
+
+typedef pgd_t pgd_table[PTRS_PER_PGD];
+typedef pmd_t pmd_table[PTRS_PER_PMD];
+typedef pte_t pte_table[PTRS_PER_PTE];
+
+#define PGD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pgd_table))
+#define PMD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pmd_table))
+#define PTE_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pte_table))
+
+typedef pgd_table pgd_tablepage[PGD_TABLES_PER_PAGE];
+typedef pmd_table pmd_tablepage[PMD_TABLES_PER_PAGE];
+typedef pte_table pte_tablepage[PTE_TABLES_PER_PAGE];
+
+/* Just any arbitrary offset to the start of the vmalloc VM area: the
+ * current 8MB value just means that there will be a 8MB "hole" after the
+ * physical memory until the kernel virtual memory starts. That means that
+ * any out-of-bounds memory accesses will hopefully be caught.
+ * The vmalloc() routines leaves a hole of 4kB between each vmalloced
+ * area for the same reason. ;)
+ */
+#define VMALLOC_OFFSET (8*1024*1024)
+#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+
+#endif /* __ASSEMBLY__ */
+
+/*
+ * Definitions for MMU descriptors
+ */
+#define _PAGE_PRESENT 0x001
+#define _PAGE_SHORT 0x002
+#define _PAGE_RONLY 0x004
+#define _PAGE_ACCESSED 0x008
+#define _PAGE_DIRTY 0x010
+#define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */
+#define _PAGE_COW 0x800 /* implemented in software */
+#define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */
+#define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */
+#define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */
+#define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */
+#define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */
+
+#define _DESCTYPE_MASK 0x003
+
+#define _CACHEMASK040 (~0x060)
+#define _TABLE_MASK (0xfffffe00)
+
+#define _PAGE_TABLE (_PAGE_SHORT)
+#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE)
+
+#ifndef __ASSEMBLY__
+
+/* This is the cache mode to be used for pages containing page descriptors for
+ * processors >= '040. It is in pte_mknocache(), and the variable is defined
+ * and initialized in head.S */
+extern int m68k_pgtable_cachemode;
+
+#if defined(CONFIG_M68040_OR_M68060_ONLY)
+#define mm_cachebits _PAGE_CACHE040
+#elif defined(CONFIG_M68020_OR_M68030_ONLY)
+#define mm_cachebits 0
+#else
+extern unsigned long mm_cachebits;
+#endif
+
+#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
+#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | mm_cachebits)
+#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
+#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
+#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | mm_cachebits)
+
+/* Alternate definitions that are compile time constants, for
+ initializing protection_map. The cachebits are fixed later. */
+#define PAGE_NONE_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
+#define PAGE_SHARED_C __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
+#define PAGE_COPY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
+#define PAGE_READONLY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
+
+/*
+ * The m68k can't do page protection for execute, and considers that the same are read.
+ * Also, write permissions imply read permissions. This is the closest we can get..
+ */
+#define __P000 PAGE_NONE_C
+#define __P001 PAGE_READONLY_C
+#define __P010 PAGE_COPY_C
+#define __P011 PAGE_COPY_C
+#define __P100 PAGE_READONLY_C
+#define __P101 PAGE_READONLY_C
+#define __P110 PAGE_COPY_C
+#define __P111 PAGE_COPY_C
+
+#define __S000 PAGE_NONE_C
+#define __S001 PAGE_READONLY_C
+#define __S010 PAGE_SHARED_C
+#define __S011 PAGE_SHARED_C
+#define __S100 PAGE_READONLY_C
+#define __S101 PAGE_READONLY_C
+#define __S110 PAGE_SHARED_C
+#define __S111 PAGE_SHARED_C
+
+/* zero page used for uninitialized stuff */
+extern unsigned long empty_zero_page;
+
+/*
+ * BAD_PAGETABLE is used when we need a bogus page-table, while
+ * BAD_PAGE is used for a bogus page.
+ *
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern pte_t __bad_page(void);
+extern pte_t * __bad_pagetable(void);
+
+#define BAD_PAGETABLE __bad_pagetable()
+#define BAD_PAGE __bad_page()
+#define ZERO_PAGE empty_zero_page
+
+/* number of bits that fit into a memory pointer */
+#define BITS_PER_PTR (8*sizeof(unsigned long))
+
+/* to align the pointer to a pointer address */
+#define PTR_MASK (~(sizeof(void*)-1))
+
+/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
+/* 64-bit machines, beware! SRB. */
+#define SIZEOF_PTR_LOG2 2
+
+/* to find an entry in a page-table */
+#define PAGE_PTR(address) \
+((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
+
+/* For virtual address to physical address conversion */
+extern unsigned long mm_vtop(unsigned long addr) __attribute__ ((const));
+extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));
+#define VTOP(addr) (mm_vtop((unsigned long)(addr)))
+#define PTOV(addr) (mm_ptov((unsigned long)(addr)))
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+#define mk_pte(page, pgprot) \
+({ pte_t __pte; pte_val(__pte) = VTOP(page) + pgprot_val(pgprot); __pte; })
+#define mk_pte_phys(physpage, pgprot) \
+({ pte_t __pte; pte_val(__pte) = VTOP(physpage) + pgprot_val(pgprot); __pte; })
+
+extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
+
+extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
+{
+ int i;
+
+ ptep = (pte_t *) VTOP(ptep);
+ for (i = 0; i < 16; i++, ptep += PTRS_PER_PTE/16)
+ pmdp->pmd[i] = _PAGE_TABLE | _PAGE_ACCESSED | (unsigned long)ptep;
+}
+
+/* early termination version of the above */
+extern inline void pmd_set_et(pmd_t * pmdp, pte_t * ptep)
+{
+ int i;
+
+ ptep = (pte_t *) VTOP(ptep);
+ for (i = 0; i < 16; i++, ptep += PTRS_PER_PTE/16)
+ pmdp->pmd[i] = _PAGE_PRESENT | _PAGE_ACCESSED | (unsigned long)ptep;
+}
+
+extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
+{ pgd_val(*pgdp) = _PAGE_TABLE | _PAGE_ACCESSED | VTOP(pmdp); }
+
+extern inline unsigned long pte_page(pte_t pte)
+{ return PTOV(pte_val(pte) & PAGE_MASK); }
+
+extern inline unsigned long pmd_page2(pmd_t *pmd)
+{ return PTOV(pmd_val(*pmd) & _TABLE_MASK); }
+#define pmd_page(pmd) pmd_page2(&(pmd))
+
+extern inline unsigned long pgd_page(pgd_t pgd)
+{ return PTOV(pgd_val(pgd) & _TABLE_MASK); }
+
+extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
+extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
+extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
+
+extern inline int pmd_none2(pmd_t *pmd) { return !pmd_val(*pmd); }
+#define pmd_none(pmd) pmd_none2(&(pmd))
+extern inline int pmd_bad2(pmd_t *pmd) { return (pmd_val(*pmd) & _DESCTYPE_MASK) != _PAGE_TABLE; }
+#define pmd_bad(pmd) pmd_bad2(&(pmd))
+extern inline int pmd_present2(pmd_t *pmd) { return pmd_val(*pmd) & _PAGE_TABLE; }
+#define pmd_present(pmd) pmd_present2(&(pmd))
+extern inline void pmd_clear(pmd_t * pmdp)
+{
+ short i;
+
+ for (i = 15; i >= 0; i--)
+ pmdp->pmd[i] = 0;
+}
+
+extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); }
+extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE; }
+extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_TABLE; }
+
+extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; }
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+extern inline int pte_read(pte_t pte) { return 1; }
+extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RONLY); }
+extern inline int pte_exec(pte_t pte) { return 1; }
+extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
+extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
+
+extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RONLY; return pte; }
+extern inline pte_t pte_rdprotect(pte_t pte) { return pte; }
+extern inline pte_t pte_exprotect(pte_t pte) { return pte; }
+extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
+extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
+extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RONLY; return pte; }
+extern inline pte_t pte_mkread(pte_t pte) { return pte; }
+extern inline pte_t pte_mkexec(pte_t pte) { return pte; }
+extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
+extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
+extern inline pte_t pte_mknocache(pte_t pte)
+{
+ pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode;
+ return pte;
+}
+extern inline pte_t pte_mkcache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | _PAGE_CACHE040; return pte; }
+
+/* to set the page-dir */
+extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir)
+{
+ tsk->tss.crp[0] = 0x80000000 | _PAGE_TABLE;
+ tsk->tss.crp[1] = VTOP(pgdir);
+ if (tsk == current) {
+ if (CPU_IS_040_OR_060)
+ __asm__ __volatile__ ("movel %0@,%/d0\n\t"
+ ".long 0x4e7b0806\n\t"
+ /* movec d0,urp */
+ : : "a" (&tsk->tss.crp[1])
+ : "d0");
+ else
+ __asm__ __volatile__ ("movec %/cacr,%/d0\n\t"
+ "oriw #0x0808,%/d0\n\t"
+ "movec %/d0,%/cacr\n\t"
+ "pmove %0@,%/crp\n\t"
+ : : "a" (&tsk->tss.crp[0])
+ : "d0");
+ }
+}
+
+#define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
+
+/* to find an entry in a page-table-directory */
+extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
+{
+ return mm->pgd + (address >> PGDIR_SHIFT);
+}
+
+extern pgd_t swapper_pg_dir[128];
+extern pgd_t kernel_pg_dir[128];
+
+extern inline pgd_t * pgd_offset_k(unsigned long address)
+{
+ return kernel_pg_dir + (address >> PGDIR_SHIFT);
+}
+
+
+/* Find an entry in the second-level page table.. */
+extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
+{
+ return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1));
+}
+
+/* Find an entry in the third-level page table.. */
+extern inline pte_t * pte_offset(pmd_t * pmdp, unsigned long address)
+{
+ return (pte_t *) pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
+}
+
+/*
+ * Allocate and free page tables. The xxx_kernel() versions are
+ * used to allocate a kernel page table - this turns on ASN bits
+ * if any.
+ */
+
+extern inline void nocache_page (unsigned long vaddr)
+{
+ if (CPU_IS_040_OR_060) {
+ pgd_t *dir;
+ pmd_t *pmdp;
+ pte_t *ptep;
+
+ if(CPU_IS_060)
+ __asm__ __volatile__ ("movel %0,%/a0\n\t"
+ ".word 0xf470"
+ : : "g" (VTOP(vaddr))
+ : "a0");
+
+ dir = pgd_offset_k(vaddr);
+ pmdp = pmd_offset(dir,vaddr);
+ ptep = pte_offset(pmdp,vaddr);
+ *ptep = pte_mknocache(*ptep);
+ }
+}
+
+static inline void cache_page (unsigned long vaddr)
+{
+ if (CPU_IS_040_OR_060) {
+ pgd_t *dir;
+ pmd_t *pmdp;
+ pte_t *ptep;
+
+ dir = pgd_offset_k(vaddr);
+ pmdp = pmd_offset(dir,vaddr);
+ ptep = pte_offset(pmdp,vaddr);
+ *ptep = pte_mkcache(*ptep);
+ }
+}
+
+
+extern const char PgtabStr_bad_pmd[];
+extern const char PgtabStr_bad_pgd[];
+extern const char PgtabStr_bad_pmdk[];
+extern const char PgtabStr_bad_pgdk[];
+
+extern inline void pte_free(pte_t * pte)
+{
+ cache_page((unsigned long)pte);
+ free_page((unsigned long) pte);
+}
+
+extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
+{
+ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+ if (pmd_none(*pmd)) {
+ pte_t * page = (pte_t *)__get_free_page(GFP_KERNEL);
+ if (pmd_none(*pmd)) {
+ if (page) {
+ memset((void *) page, 0, PAGE_SIZE);
+ nocache_page((unsigned long)page);
+ pmd_set(pmd,page);
+ return page + address;
+ }
+ pmd_set(pmd, BAD_PAGETABLE);
+ return NULL;
+ }
+ free_page((unsigned long)page);
+ }
+ if (pmd_bad(*pmd)) {
+ printk(PgtabStr_bad_pmd, pmd_val(*pmd));
+ pmd_set(pmd, BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pte_t *) pmd_page(*pmd) + address;
+}
+
+extern pmd_t *get_pointer_table (void);
+extern void free_pointer_table (pmd_t *);
+extern pmd_t *get_kpointer_table (void);
+extern void free_kpointer_table (pmd_t *);
+
+extern inline void pmd_free(pmd_t * pmd)
+{
+ free_pointer_table (pmd);
+}
+
+extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
+{
+ address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
+ if (pgd_none(*pgd)) {
+ pmd_t *page = get_pointer_table();
+ if (pgd_none(*pgd)) {
+ if (page) {
+ pgd_set(pgd, page);
+ return page + address;
+ }
+ pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);
+ return NULL;
+ }
+ free_pointer_table(page);
+ }
+ if (pgd_bad(*pgd)) {
+ printk(PgtabStr_bad_pgd, pgd_val(*pgd));
+ pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pmd_t *) pgd_page(*pgd) + address;
+}
+
+extern inline void pte_free_kernel(pte_t * pte)
+{
+ cache_page((unsigned long)pte);
+ free_page((unsigned long) pte);
+}
+
+extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
+{
+ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+ if (pmd_none(*pmd)) {
+ pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
+ if (pmd_none(*pmd)) {
+ if (page) {
+ nocache_page((unsigned long)page);
+ pmd_set(pmd, page);
+ return page + address;
+ }
+ pmd_set(pmd, BAD_PAGETABLE);
+ return NULL;
+ }
+ free_page((unsigned long) page);
+ }
+ if (pmd_bad(*pmd)) {
+ printk(PgtabStr_bad_pmdk, pmd_val(*pmd));
+ pmd_set(pmd, BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pte_t *) pmd_page(*pmd) + address;
+}
+
+extern inline void pmd_free_kernel(pmd_t * pmd)
+{
+ free_kpointer_table(pmd);
+}
+
+extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
+{
+ address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
+ if (pgd_none(*pgd)) {
+ pmd_t *page = get_kpointer_table();
+ if (pgd_none(*pgd)) {
+ if (page) {
+ pgd_set(pgd, page);
+ return page + address;
+ }
+ pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);
+ return NULL;
+ }
+ free_kpointer_table(page);
+ }
+ if (pgd_bad(*pgd)) {
+ printk(PgtabStr_bad_pgdk, pgd_val(*pgd));
+ pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);
+ return NULL;
+ }
+ return (pmd_t *) pgd_page(*pgd) + address;
+}
+
+extern inline void pgd_free(pgd_t * pgd)
+{
+ free_pointer_table ((pmd_t *) pgd);
+}
+
+extern inline pgd_t * pgd_alloc(void)
+{
+ return (pgd_t *)get_pointer_table ();
+}
+
+#define flush_icache() \
+do { \
+ if (CPU_IS_040_OR_060) \
+ asm __volatile__ ("nop; .word 0xf498 /* cinva %%ic */"); \
+ else \
+ asm __volatile__ ("movec %/cacr,%/d0;" \
+ "oriw %0,%/d0;" \
+ "movec %/d0,%/cacr" \
+ : /* no outputs */ \
+ : "i" (FLUSH_I) \
+ : "d0"); \
+} while (0)
+
+/*
+ * invalidate the cache for the specified memory range.
+ * It starts at the physical address specified for
+ * the given number of bytes.
+ */
+extern void cache_clear (unsigned long paddr, int len);
+/*
+ * push any dirty cache in the specified memory range.
+ * It starts at the physical address specified for
+ * the given number of bytes.
+ */
+extern void cache_push (unsigned long paddr, int len);
+
+/*
+ * push and invalidate pages in the specified user virtual
+ * memory range.
+ */
+extern void cache_push_v (unsigned long vaddr, int len);
+
+/* cache code */
+#define FLUSH_I_AND_D (0x00000808)
+#define FLUSH_I (0x00000008)
+
+/* This is needed whenever the virtual mapping of the current
+ process changes. */
+#define __flush_cache_all() \
+ do { \
+ if (CPU_IS_040_OR_060) \
+ __asm__ __volatile__ ("nop; .word 0xf478\n" ::); \
+ else \
+ __asm__ __volatile__ ("movec %%cacr,%%d0\n\t" \
+ "orw %0,%%d0\n\t" \
+ "movec %%d0,%%cacr" \
+ : : "di" (FLUSH_I_AND_D) : "d0"); \
+ } while (0)
+
+#define __flush_cache_030() \
+ do { \
+ if (CPU_IS_020_OR_030) \
+ __asm__ __volatile__ ("movec %%cacr,%%d0\n\t" \
+ "orw %0,%%d0\n\t" \
+ "movec %%d0,%%cacr" \
+ : : "di" (FLUSH_I_AND_D) : "d0"); \
+ } while (0)
+
+#define flush_cache_all() __flush_cache_all()
+
+extern inline void flush_cache_mm(struct mm_struct *mm)
+{
+#if FLUSH_VIRTUAL_CACHE_040
+ if (mm == current->mm) __flush_cache_all();
+#else
+ if (mm == current->mm) __flush_cache_030();
+#endif
+}
+
+extern inline void flush_cache_range(struct mm_struct *mm,
+ unsigned long start,
+ unsigned long end)
+{
+ if (mm == current->mm){
+#if FLUSH_VIRTUAL_CACHE_040
+ if (CPU_IS_040_OR_060)
+ cache_push_v(start, end-start);
+ else
+#endif
+ __flush_cache_030();
+ }
+}
+
+extern inline void flush_cache_page(struct vm_area_struct *vma,
+ unsigned long vmaddr)
+{
+ if (vma->vm_mm == current->mm){
+#if FLUSH_VIRTUAL_CACHE_040
+ if (CPU_IS_040_OR_060)
+ cache_push_v(vmaddr, PAGE_SIZE);
+ else
+#endif
+ __flush_cache_030();
+ }
+}
+
+/* Push the page at kernel virtual address and clear the icache */
+extern inline void flush_page_to_ram (unsigned long address)
+{
+ if (CPU_IS_040_OR_060) {
+ register unsigned long tmp __asm ("a0") = VTOP(address);
+ __asm__ __volatile__ ("nop\n\t"
+ ".word 0xf470 /* cpushp %%dc,(%0) */\n\t"
+ ".word 0xf490 /* cinvp %%ic,(%0) */"
+ : : "a" (tmp));
+ }
+ else
+ __asm volatile ("movec %%cacr,%%d0\n\t"
+ "orw %0,%%d0\n\t"
+ "movec %%d0,%%cacr"
+ : : "di" (FLUSH_I) : "d0");
+}
+
+/* Push n pages at kernel virtual address and clear the icache */
+extern inline void flush_pages_to_ram (unsigned long address, int n)
+{
+ if (CPU_IS_040_OR_060) {
+ while (n--) {
+ register unsigned long tmp __asm ("a0") = VTOP(address);
+ __asm__ __volatile__ ("nop\n\t"
+ ".word 0xf470 /* cpushp %%dc,(%0) */\n\t"
+ ".word 0xf490 /* cinvp %%ic,(%0) */"
+ : : "a" (tmp));
+ address += PAGE_SIZE;
+ }
+ }
+ else
+ __asm volatile ("movec %%cacr,%%d0\n\t"
+ "orw %0,%%d0\n\t"
+ "movec %%d0,%%cacr"
+ : : "di" (FLUSH_I) : "d0");
+}
+
+/*
+ * Check if the addr/len goes up to the end of a physical
+ * memory chunk. Used for DMA functions.
+ */
+int mm_end_of_chunk (unsigned long addr, int len);
+
+/*
+ * Map some physical address range into the kernel address space. The
+ * code is copied and adapted from map_chunk().
+ */
+extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
+ int nocacheflag, unsigned long *memavailp );
+/*
+ * Change the cache mode of some kernel address range.
+ */
+extern void kernel_set_cachemode( unsigned long address, unsigned long size,
+ unsigned cmode );
+
+/* Values for nocacheflag and cmode */
+#define KERNELMAP_FULL_CACHING 0
+#define KERNELMAP_NOCACHE_SER 1
+#define KERNELMAP_NOCACHE_NONSER 2
+#define KERNELMAP_NO_COPYBACK 3
+
+/*
+ * The m68k doesn't have any external MMU info: the kernel page
+ * tables contain all the necessary information.
+ */
+extern inline void update_mmu_cache(struct vm_area_struct * vma,
+ unsigned long address, pte_t pte)
+{
+}
+
+/*
+ * I don't know what is going on here, but since these were changed,
+ * swapping hasn't been working on the 68040.
+ */
+
+#define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)
+#if 0
+#define SWP_OFFSET(entry) ((entry) >> 9)
+#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))
+#else
+#define SWP_OFFSET(entry) ((entry) >> PAGE_SHIFT)
+#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << PAGE_SHIFT))
+#endif
+
+#endif /* __ASSEMBLY__ */
+
+#endif /* _M68K_PGTABLE_H */