1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* linux/arch/arm/kernel/process.c
*
* Copyright (C) 1996 Russell King - Converted to ARM.
* Origional Copyright (C) 1995 Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#define __KERNEL_SYSCALLS__
#include <stdarg.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/interrupt.h>
#include <linux/config.h>
#include <linux/unistd.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
extern char *processor_modes[];
asmlinkage void ret_from_sys_call(void) __asm__("ret_from_sys_call");
static int hlt_counter=0;
void disable_hlt(void)
{
hlt_counter++;
}
void enable_hlt(void)
{
hlt_counter--;
}
/*
* The idle loop on an ARM...
*/
asmlinkage int sys_idle(void)
{
if (current->pid != 0)
return -EPERM;
/* endless idle loop with no priority at all */
while (1) {
if (!current->need_resched && !hlt_counter)
proc_idle();
current->policy = SCHED_YIELD;
schedule();
#ifndef CONFIG_NO_PGT_CACHE
check_pgt_cache();
#endif
}
}
static char reboot_mode = 'h';
__initfunc(void reboot_setup(char *str, int *ints))
{
reboot_mode = str[0];
}
void machine_restart(char * __unused)
{
arch_reset(reboot_mode);
panic("Reboot failed\n");
while (1);
}
void machine_halt(void)
{
}
void machine_power_off(void)
{
}
void show_regs(struct pt_regs * regs)
{
unsigned long flags;
flags = condition_codes(regs);
printk( "pc : [<%08lx>] lr : [<%08lx>]\n"
"sp : %08lx ip : %08lx fp : %08lx\n",
instruction_pointer(regs),
regs->ARM_lr, regs->ARM_sp,
regs->ARM_ip, regs->ARM_fp);
printk( "r10: %08lx r9 : %08lx r8 : %08lx\n",
regs->ARM_r10, regs->ARM_r9,
regs->ARM_r8);
printk( "r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
regs->ARM_r7, regs->ARM_r6,
regs->ARM_r5, regs->ARM_r4);
printk( "r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
regs->ARM_r3, regs->ARM_r2,
regs->ARM_r1, regs->ARM_r0);
printk("Flags: %c%c%c%c",
flags & CC_N_BIT ? 'N' : 'n',
flags & CC_Z_BIT ? 'Z' : 'z',
flags & CC_C_BIT ? 'C' : 'c',
flags & CC_V_BIT ? 'V' : 'v');
printk(" IRQs %s FIQs %s Mode %s Segment %s\n",
interrupts_enabled(regs) ? "on" : "off",
fast_interrupts_enabled(regs) ? "on" : "off",
processor_modes[processor_mode(regs)],
get_fs() == get_ds() ? "kernel" : "user");
#if defined(CONFIG_CPU_32)
{
int ctrl, transbase, dac;
__asm__ (
" mrc p15, 0, %0, c1, c0\n"
" mrc p15, 0, %1, c2, c0\n"
" mrc p15, 0, %2, c3, c0\n"
: "=r" (ctrl), "=r" (transbase), "=r" (dac));
printk("Control: %04X Table: %08X DAC: %08X\n",
ctrl, transbase, dac);
}
#endif
}
/*
* Task structure and kernel stack allocation.
*
* Taken from the i386 version.
*/
#ifdef CONFIG_CPU_32
#define EXTRA_TASK_STRUCT 8
static struct task_struct *task_struct_stack[EXTRA_TASK_STRUCT];
static int task_struct_stack_ptr = -1;
#endif
struct task_struct *alloc_task_struct(void)
{
struct task_struct *tsk;
#ifndef EXTRA_TASK_STRUCT
tsk = ll_alloc_task_struct();
#else
int index;
index = task_struct_stack_ptr;
if (index >= EXTRA_TASK_STRUCT/2)
goto use_cache;
tsk = ll_alloc_task_struct();
if (!tsk) {
index = task_struct_stack_ptr;
if (index >= 0) {
use_cache: tsk = task_struct_stack[index];
task_struct_stack_ptr = index - 1;
}
}
#endif
#ifdef CONFIG_SYSRQ
/* You need this if you want SYSRQ-T to give sensible stack
* usage information
*/
if (tsk) {
char *p = (char *)tsk;
memzero(p+KERNEL_STACK_SIZE, KERNEL_STACK_SIZE);
}
#endif
return tsk;
}
void free_task_struct(struct task_struct *p)
{
#ifdef EXTRA_TASK_STRUCT
int index = task_struct_stack_ptr + 1;
if (index < EXTRA_TASK_STRUCT) {
task_struct_stack[index] = p;
task_struct_stack_ptr = index;
} else
#endif
ll_free_task_struct(p);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
}
void flush_thread(void)
{
int i;
for (i = 0; i < NR_DEBUGS; i++)
current->tss.debug[i] = 0;
current->used_math = 0;
current->flags &= ~PF_USEDFPU;
}
void release_thread(struct task_struct *dead_task)
{
}
int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
struct task_struct * p, struct pt_regs * regs)
{
struct pt_regs * childregs;
struct context_save_struct * save;
childregs = ((struct pt_regs *)((unsigned long)p + 8192)) - 1;
*childregs = *regs;
childregs->ARM_r0 = 0;
childregs->ARM_sp = esp;
save = ((struct context_save_struct *)(childregs)) - 1;
init_thread_css(save);
p->tss.save = save;
return 0;
}
/*
* fill in the fpe structure for a core dump...
*/
int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
{
int fpvalid = 0;
if (current->used_math)
memcpy (fp, ¤t->tss.fpstate.soft, sizeof (fp));
return fpvalid;
}
/*
* fill in the user structure for a core dump..
*/
void dump_thread(struct pt_regs * regs, struct user * dump)
{
int i;
dump->magic = CMAGIC;
dump->start_code = current->mm->start_code;
dump->start_stack = regs->ARM_sp & ~(PAGE_SIZE - 1);
dump->u_tsize = (current->mm->end_code - current->mm->start_code) >> PAGE_SHIFT;
dump->u_dsize = (current->mm->brk - current->mm->start_data + PAGE_SIZE - 1) >> PAGE_SHIFT;
dump->u_ssize = 0;
for (i = 0; i < NR_DEBUGS; i++)
dump->u_debugreg[i] = current->tss.debug[i];
if (dump->start_stack < 0x04000000)
dump->u_ssize = (0x04000000 - dump->start_stack) >> PAGE_SHIFT;
dump->regs = *regs;
dump->u_fpvalid = dump_fpu (regs, &dump->u_fp);
}
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
* who haven't done an "execve()") should use this: it will work within
* a system call from a "real" process, but the process memory space will
* not be free'd until both the parent and the child have exited.
*/
pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
extern int sys_exit(int) __attribute__((noreturn));
pid_t __ret;
__asm__ __volatile__(
"mov r0, %1 @ kernel_thread sys_clone\n"
" mov r1, #0\n"
__syscall(clone)"\n"
" mov %0, r0"
: "=r" (__ret)
: "Ir" (flags | CLONE_VM) : "r0", "r1");
if (__ret == 0)
sys_exit((fn)(arg));
return __ret;
}
|