1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
|
/*
* x86 SMP booting functions
*
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
* (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
*
* Much of the core SMP work is based on previous work by Thomas Radke, to
* whom a great many thanks are extended.
*
* Thanks to Intel for making available several different Pentium,
* Pentium Pro and Pentium-II/Xeon MP machines.
* Original development of Linux SMP code supported by Caldera.
*
* This code is released under the GNU public license version 2 or
* later.
*
* Fixes
* Felix Koop : NR_CPUS used properly
* Jose Renau : Handle single CPU case.
* Alan Cox : By repeated request 8) - Total BogoMIP report.
* Greg Wright : Fix for kernel stacks panic.
* Erich Boleyn : MP v1.4 and additional changes.
* Matthias Sattler : Changes for 2.1 kernel map.
* Michel Lespinasse : Changes for 2.1 kernel map.
* Michael Chastain : Change trampoline.S to gnu as.
* Alan Cox : Dumb bug: 'B' step PPro's are fine
* Ingo Molnar : Added APIC timers, based on code
* from Jose Renau
* Ingo Molnar : various cleanups and rewrites
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/smp_lock.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <linux/delay.h>
#include <linux/mc146818rtc.h>
#include <asm/mtrr.h>
#include <asm/pgalloc.h>
/* Set if we find a B stepping CPU */
static int smp_b_stepping;
/* Setup configured maximum number of CPUs to activate */
static int max_cpus = -1;
/* Total count of live CPUs */
int smp_num_cpus = 1;
/* Bitmask of currently online CPUs */
unsigned long cpu_online_map;
/* which CPU (physical APIC ID) maps to which logical CPU number */
volatile int x86_apicid_to_cpu[NR_CPUS];
/* which logical CPU number maps to which CPU (physical APIC ID) */
volatile int x86_cpu_to_apicid[NR_CPUS];
static volatile unsigned long cpu_callin_map;
static volatile unsigned long cpu_callout_map;
/* Per CPU bogomips and other parameters */
struct cpuinfo_x86 cpu_data[NR_CPUS];
/* Set when the idlers are all forked */
int smp_threads_ready;
/*
* Setup routine for controlling SMP activation
*
* Command-line option of "nosmp" or "maxcpus=0" will disable SMP
* activation entirely (the MPS table probe still happens, though).
*
* Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
* greater than 0, limits the maximum number of CPUs activated in
* SMP mode to <NUM>.
*/
static int __init nosmp(char *str)
{
max_cpus = 0;
return 1;
}
__setup("nosmp", nosmp);
static int __init maxcpus(char *str)
{
get_option(&str, &max_cpus);
return 1;
}
__setup("maxcpus=", maxcpus);
/*
* Trampoline 80x86 program as an array.
*/
extern unsigned char trampoline_data [];
extern unsigned char trampoline_end [];
static unsigned char *trampoline_base;
/*
* Currently trivial. Write the real->protected mode
* bootstrap into the page concerned. The caller
* has made sure it's suitably aligned.
*/
static unsigned long __init setup_trampoline(void)
{
memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
return virt_to_phys(trampoline_base);
}
/*
* We are called very early to get the low memory for the
* SMP bootup trampoline page.
*/
void __init smp_alloc_memory(void)
{
trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
/*
* Has to be in very low memory so we can execute
* real-mode AP code.
*/
if (__pa(trampoline_base) >= 0x9F000)
BUG();
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
void __init smp_store_cpu_info(int id)
{
struct cpuinfo_x86 *c = cpu_data + id;
*c = boot_cpu_data;
c->pte_quick = 0;
c->pmd_quick = 0;
c->pgd_quick = 0;
c->pgtable_cache_sz = 0;
identify_cpu(c);
/*
* Mask B, Pentium, but not Pentium MMX
*/
if (c->x86_vendor == X86_VENDOR_INTEL &&
c->x86 == 5 &&
c->x86_mask >= 1 && c->x86_mask <= 4 &&
c->x86_model <= 3)
/*
* Remember we have B step Pentia with bugs
*/
smp_b_stepping = 1;
}
/*
* Architecture specific routine called by the kernel just before init is
* fired off. This allows the BP to have everything in order [we hope].
* At the end of this all the APs will hit the system scheduling and off
* we go. Each AP will load the system gdt's and jump through the kernel
* init into idle(). At this point the scheduler will one day take over
* and give them jobs to do. smp_callin is a standard routine
* we use to track CPUs as they power up.
*/
static atomic_t smp_commenced = ATOMIC_INIT(0);
void __init smp_commence(void)
{
/*
* Lets the callins below out of their loop.
*/
Dprintk("Setting commenced=1, go go go\n");
wmb();
atomic_set(&smp_commenced,1);
}
/*
* TSC synchronization.
*
* We first check wether all CPUs have their TSC's synchronized,
* then we print a warning if not, and always resync.
*/
static atomic_t tsc_start_flag = ATOMIC_INIT(0);
static atomic_t tsc_count_start = ATOMIC_INIT(0);
static atomic_t tsc_count_stop = ATOMIC_INIT(0);
static unsigned long long tsc_values[NR_CPUS];
#define NR_LOOPS 5
extern unsigned long fast_gettimeoffset_quotient;
/*
* accurate 64-bit/32-bit division, expanded to 32-bit divisions and 64-bit
* multiplication. Not terribly optimized but we need it at boot time only
* anyway.
*
* result == a / b
* == (a1 + a2*(2^32)) / b
* == a1/b + a2*(2^32/b)
* == a1/b + a2*((2^32-1)/b) + a2/b + (a2*((2^32-1) % b))/b
* ^---- (this multiplication can overflow)
*/
static unsigned long long div64 (unsigned long long a, unsigned long b0)
{
unsigned int a1, a2;
unsigned long long res;
a1 = ((unsigned int*)&a)[0];
a2 = ((unsigned int*)&a)[1];
res = a1/b0 +
(unsigned long long)a2 * (unsigned long long)(0xffffffff/b0) +
a2 / b0 +
(a2 * (0xffffffff % b0)) / b0;
return res;
}
static void __init synchronize_tsc_bp (void)
{
int i;
unsigned long long t0;
unsigned long long sum, avg;
long long delta;
unsigned long one_usec;
int buggy = 0;
printk("checking TSC synchronization across CPUs: ");
one_usec = ((1<<30)/fast_gettimeoffset_quotient)*(1<<2);
atomic_set(&tsc_start_flag, 1);
wmb();
/*
* We loop a few times to get a primed instruction cache,
* then the last pass is more or less synchronized and
* the BP and APs set their cycle counters to zero all at
* once. This reduces the chance of having random offsets
* between the processors, and guarantees that the maximum
* delay between the cycle counters is never bigger than
* the latency of information-passing (cachelines) between
* two CPUs.
*/
for (i = 0; i < NR_LOOPS; i++) {
/*
* all APs synchronize but they loop on '== num_cpus'
*/
while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb();
atomic_set(&tsc_count_stop, 0);
wmb();
/*
* this lets the APs save their current TSC:
*/
atomic_inc(&tsc_count_start);
rdtscll(tsc_values[smp_processor_id()]);
/*
* We clear the TSC in the last loop:
*/
if (i == NR_LOOPS-1)
write_tsc(0, 0);
/*
* Wait for all APs to leave the synchronization point:
*/
while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb();
atomic_set(&tsc_count_start, 0);
wmb();
atomic_inc(&tsc_count_stop);
}
sum = 0;
for (i = 0; i < smp_num_cpus; i++) {
t0 = tsc_values[i];
sum += t0;
}
avg = div64(sum, smp_num_cpus);
sum = 0;
for (i = 0; i < smp_num_cpus; i++) {
delta = tsc_values[i] - avg;
if (delta < 0)
delta = -delta;
/*
* We report bigger than 2 microseconds clock differences.
*/
if (delta > 2*one_usec) {
long realdelta;
if (!buggy) {
buggy = 1;
printk("\n");
}
realdelta = div64(delta, one_usec);
if (tsc_values[i] < avg)
realdelta = -realdelta;
printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n",
i, realdelta);
}
sum += delta;
}
if (!buggy)
printk("passed.\n");
}
static void __init synchronize_tsc_ap (void)
{
int i;
/*
* smp_num_cpus is not necessarily known at the time
* this gets called, so we first wait for the BP to
* finish SMP initialization:
*/
while (!atomic_read(&tsc_start_flag)) mb();
for (i = 0; i < NR_LOOPS; i++) {
atomic_inc(&tsc_count_start);
while (atomic_read(&tsc_count_start) != smp_num_cpus) mb();
rdtscll(tsc_values[smp_processor_id()]);
if (i == NR_LOOPS-1)
write_tsc(0, 0);
atomic_inc(&tsc_count_stop);
while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb();
}
}
#undef NR_LOOPS
extern void calibrate_delay(void);
static atomic_t init_deasserted;
void __init smp_callin(void)
{
int cpuid, phys_id;
unsigned long timeout;
/*
* If waken up by an INIT in an 82489DX configuration
* we may get here before an INIT-deassert IPI reaches
* our local APIC. We have to wait for the IPI or we'll
* lock up on an APIC access.
*/
while (!atomic_read(&init_deasserted));
/*
* (This works even if the APIC is not enabled.)
*/
phys_id = GET_APIC_ID(apic_read(APIC_ID));
cpuid = current->processor;
if (test_and_set_bit(cpuid, &cpu_online_map)) {
printk("huh, phys CPU#%d, CPU#%d already present??\n",
phys_id, cpuid);
BUG();
}
Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
/*
* STARTUP IPIs are fragile beasts as they might sometimes
* trigger some glue motherboard logic. Complete APIC bus
* silence for 1 second, this overestimates the time the
* boot CPU is spending to send the up to 2 STARTUP IPIs
* by a factor of two. This should be enough.
*/
/*
* Waiting 2s total for startup (udelay is not yet working)
*/
timeout = jiffies + 2*HZ;
while (time_before(jiffies, timeout)) {
/*
* Has the boot CPU finished it's STARTUP sequence?
*/
if (test_bit(cpuid, &cpu_callout_map))
break;
}
if (!time_before(jiffies, timeout)) {
printk("BUG: CPU%d started up but did not get a callout!\n",
cpuid);
BUG();
}
/*
* the boot CPU has finished the init stage and is spinning
* on callin_map until we finish. We are free to set up this
* CPU, first the APIC. (this is probably redundant on most
* boards)
*/
Dprintk("CALLIN, before setup_local_APIC().\n");
setup_local_APIC();
sti();
#ifdef CONFIG_MTRR
/*
* Must be done before calibration delay is computed
*/
mtrr_init_secondary_cpu ();
#endif
/*
* Get our bogomips.
*/
calibrate_delay();
Dprintk("Stack at about %p\n",&cpuid);
/*
* Save our processor parameters
*/
smp_store_cpu_info(cpuid);
/*
* Allow the master to continue.
*/
set_bit(cpuid, &cpu_callin_map);
/*
* Synchronize the TSC with the BP
*/
if (cpu_has_tsc)
synchronize_tsc_ap();
}
int cpucount;
extern int cpu_idle(void);
/*
* Activate a secondary processor.
*/
int __init start_secondary(void *unused)
{
/*
* Dont put anything before smp_callin(), SMP
* booting is too fragile that we want to limit the
* things done here to the most necessary things.
*/
cpu_init();
smp_callin();
while (!atomic_read(&smp_commenced))
rep_nop();
/*
* low-memory mappings have been cleared, flush them from
* the local TLBs too.
*/
local_flush_tlb();
return cpu_idle();
}
/*
* Everything has been set up for the secondary
* CPUs - they just need to reload everything
* from the task structure
* This function must not return.
*/
void __init initialize_secondary(void)
{
/*
* We don't actually need to load the full TSS,
* basically just the stack pointer and the eip.
*/
asm volatile(
"movl %0,%%esp\n\t"
"jmp *%1"
:
:"r" (current->thread.esp),"r" (current->thread.eip));
}
extern struct {
void * esp;
unsigned short ss;
} stack_start;
static int __init fork_by_hand(void)
{
struct pt_regs regs;
/*
* don't care about the eip and regs settings since
* we'll never reschedule the forked task.
*/
return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0);
}
#if APIC_DEBUG
static inline void inquire_remote_apic(int apicid)
{
int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
char *names[] = { "ID", "VERSION", "SPIV" };
int timeout, status;
printk("Inquiring remote APIC #%d...\n", apicid);
for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
printk("... APIC #%d %s: ", apicid, names[i]);
/*
* Wait for idle.
*/
apic_wait_icr_idle();
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
timeout = 0;
do {
udelay(100);
status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
switch (status) {
case APIC_ICR_RR_VALID:
status = apic_read(APIC_RRR);
printk("%08x\n", status);
break;
default:
printk("failed\n");
}
}
}
#endif
static void __init do_boot_cpu (int apicid)
{
struct task_struct *idle;
unsigned long send_status, accept_status, boot_status, maxlvt;
int timeout, num_starts, j, cpu;
unsigned long start_eip;
cpu = ++cpucount;
/*
* We can't use kernel_thread since we must avoid to
* reschedule the child.
*/
if (fork_by_hand() < 0)
panic("failed fork for CPU %d", cpu);
/*
* We remove it from the pidhash and the runqueue
* once we got the process:
*/
idle = init_task.prev_task;
if (!idle)
panic("No idle process for CPU %d", cpu);
idle->processor = cpu;
x86_cpu_to_apicid[cpu] = apicid;
x86_apicid_to_cpu[apicid] = cpu;
idle->has_cpu = 1; /* we schedule the first task manually */
idle->thread.eip = (unsigned long) start_secondary;
del_from_runqueue(idle);
unhash_process(idle);
init_tasks[cpu] = idle;
/* start_eip had better be page-aligned! */
start_eip = setup_trampoline();
/* So we see what's up */
printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle);
/*
* This grunge runs the startup process for
* the targeted processor.
*/
atomic_set(&init_deasserted, 0);
Dprintk("Setting warm reset code and vector.\n");
CMOS_WRITE(0xa, 0xf);
local_flush_tlb();
Dprintk("1.\n");
*((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4;
Dprintk("2.\n");
*((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf;
Dprintk("3.\n");
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(apic_version[apicid])) {
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
/*
* Status is now clean
*/
send_status = 0;
accept_status = 0;
boot_status = 0;
/*
* Starting actual IPI sequence...
*/
Dprintk("Asserting INIT.\n");
/*
* Turn INIT on target chip
*/
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
/*
* Send IPI
*/
apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
| APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
mdelay(10);
Dprintk("Deasserting INIT.\n");
/* Target chip */
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
/* Send IPI */
apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
atomic_set(&init_deasserted, 1);
/*
* Should we send STARTUP IPIs ?
*
* Determine this based on the APIC version.
* If we don't have an integrated APIC, don't
* send the STARTUP IPIs.
*/
if (APIC_INTEGRATED(apic_version[apicid]))
num_starts = 2;
else
num_starts = 0;
/*
* Run STARTUP IPI loop.
*/
Dprintk("#startup loops: %d.\n", num_starts);
maxlvt = get_maxlvt();
for (j = 1; j <= num_starts; j++) {
Dprintk("Sending STARTUP #%d.\n",j);
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
Dprintk("After apic_write.\n");
/*
* STARTUP IPI
*/
/* Target chip */
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
/* Boot on the stack */
/* Kick the second */
apic_write_around(APIC_ICR, APIC_DM_STARTUP
| (start_eip >> 12));
Dprintk("Startup point 1.\n");
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
/*
* Due to the Pentium erratum 3AP.
*/
if (maxlvt > 3) {
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
}
accept_status = (apic_read(APIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
Dprintk("After Startup.\n");
if (send_status)
printk("APIC never delivered???\n");
if (accept_status)
printk("APIC delivery error (%lx).\n", accept_status);
if (!send_status && !accept_status) {
/*
* allow APs to start initializing.
*/
Dprintk("Before Callout %d.\n", cpu);
set_bit(cpu, &cpu_callout_map);
Dprintk("After Callout %d.\n", cpu);
/*
* Wait 5s total for a response
*/
for (timeout = 0; timeout < 50000; timeout++) {
if (test_bit(cpu, &cpu_callin_map))
break; /* It has booted */
udelay(100);
}
if (test_bit(cpu, &cpu_callin_map)) {
/* number CPUs logically, starting from 1 (BSP is 0) */
Dprintk("OK.\n");
printk("CPU%d: ", cpu);
print_cpu_info(&cpu_data[cpu]);
Dprintk("CPU has booted.\n");
} else {
boot_status = 1;
if (*((volatile unsigned char *)phys_to_virt(8192))
== 0xA5)
/* trampoline started but...? */
printk("Stuck ??\n");
else
/* trampoline code not run */
printk("Not responding.\n");
#if APIC_DEBUG
inquire_remote_apic(apicid);
#endif
}
}
if (send_status || accept_status || boot_status) {
x86_cpu_to_apicid[cpu] = -1;
x86_apicid_to_cpu[apicid] = -1;
cpucount--;
}
/* mark "stuck" area as not stuck */
*((volatile unsigned long *)phys_to_virt(8192)) = 0;
}
cycles_t cacheflush_time;
extern unsigned long cpu_khz;
static void smp_tune_scheduling (void)
{
unsigned long cachesize; /* kB */
unsigned long bandwidth = 350; /* MB/s */
/*
* Rough estimation for SMP scheduling, this is the number of
* cycles it takes for a fully memory-limited process to flush
* the SMP-local cache.
*
* (For a P5 this pretty much means we will choose another idle
* CPU almost always at wakeup time (this is due to the small
* L1 cache), on PIIs it's around 50-100 usecs, depending on
* the cache size)
*/
if (!cpu_khz) {
/*
* this basically disables processor-affinity
* scheduling on SMP without a TSC.
*/
cacheflush_time = 0;
return;
} else {
cachesize = boot_cpu_data.x86_cache_size;
if (cachesize == -1) {
cachesize = 16; /* Pentiums, 2x8kB cache */
bandwidth = 100;
}
cacheflush_time = (cpu_khz>>10) * (cachesize<<10) / bandwidth;
}
printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n",
(long)cacheflush_time/(cpu_khz/1000),
((long)cacheflush_time*100/(cpu_khz/1000)) % 100);
}
/*
* Cycle through the processors sending APIC IPIs to boot each.
*/
extern int prof_multiplier[NR_CPUS];
extern int prof_old_multiplier[NR_CPUS];
extern int prof_counter[NR_CPUS];
void __init smp_boot_cpus(void)
{
int apicid, cpu;
#ifdef CONFIG_MTRR
/* Must be done before other processors booted */
mtrr_init_boot_cpu ();
#endif
/*
* Initialize the logical to physical CPU number mapping
* and the per-CPU profiling counter/multiplier
*/
for (apicid = 0; apicid < NR_CPUS; apicid++) {
x86_apicid_to_cpu[apicid] = -1;
prof_counter[apicid] = 1;
prof_old_multiplier[apicid] = 1;
prof_multiplier[apicid] = 1;
}
/*
* Setup boot CPU information
*/
smp_store_cpu_info(0); /* Final full version of the data */
printk("CPU%d: ", 0);
print_cpu_info(&cpu_data[0]);
/*
* We have the boot CPU online for sure.
*/
set_bit(0, &cpu_online_map);
x86_apicid_to_cpu[boot_cpu_id] = 0;
x86_cpu_to_apicid[0] = boot_cpu_id;
global_irq_holder = 0;
current->processor = 0;
init_idle();
smp_tune_scheduling();
/*
* If we couldnt find an SMP configuration at boot time,
* get out of here now!
*/
if (!smp_found_config) {
printk(KERN_NOTICE "SMP motherboard not detected. Using dummy APIC emulation.\n");
#ifndef CONFIG_VISWS
io_apic_irqs = 0;
#endif
cpu_online_map = phys_cpu_present_map = 1;
smp_num_cpus = 1;
goto smp_done;
}
/*
* Should not be necessary because the MP table should list the boot
* CPU too, but we do it for the sake of robustness anyway.
*/
if (!test_bit(boot_cpu_id, &phys_cpu_present_map)) {
printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
boot_cpu_id);
phys_cpu_present_map |= (1 << hard_smp_processor_id());
}
/*
* If we couldn't find a local APIC, then get out of here now!
*/
if (!verify_local_APIC()) {
printk(KERN_ERR "BIOS bug, local APIC at 0x%lX not detected!...\n", mp_lapic_addr);
printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
#ifndef CONFIG_VISWS
io_apic_irqs = 0;
#endif
cpu_online_map = phys_cpu_present_map = 1;
smp_num_cpus = 1;
goto smp_done;
}
/*
* If SMP should be disabled, then really disable it!
*/
if (!max_cpus) {
smp_found_config = 0;
printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
#ifndef CONFIG_VISWS
io_apic_irqs = 0;
#endif
cpu_online_map = phys_cpu_present_map = 1;
smp_num_cpus = 1;
goto smp_done;
}
connect_bsp_APIC();
setup_local_APIC();
if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id)
BUG();
/*
* Now scan the CPU present map and fire up the other CPUs.
*/
Dprintk("CPU present map: %lx\n", phys_cpu_present_map);
for (apicid = 0; apicid < NR_CPUS; apicid++) {
/*
* Don't even attempt to start the boot CPU!
*/
if (apicid == boot_cpu_id)
continue;
if (!(phys_cpu_present_map & (1 << apicid)))
continue;
if ((max_cpus >= 0) && (max_cpus <= cpucount+1))
continue;
do_boot_cpu(apicid);
/*
* Make sure we unmap all failed CPUs
*/
if ((x86_apicid_to_cpu[apicid] == -1) &&
(phys_cpu_present_map & (1 << apicid)))
printk("phys CPU #%d not responding - cannot use it.\n",apicid);
}
/*
* Cleanup possible dangling ends...
*/
#ifndef CONFIG_VISWS
{
/*
* Install writable page 0 entry to set BIOS data area.
*/
local_flush_tlb();
/*
* Paranoid: Set warm reset code and vector here back
* to default values.
*/
CMOS_WRITE(0, 0xf);
*((volatile long *) phys_to_virt(0x467)) = 0;
}
#endif
/*
* Allow the user to impress friends.
*/
Dprintk("Before bogomips.\n");
if (!cpucount) {
printk(KERN_ERR "Error: only one processor found.\n");
} else {
unsigned long bogosum = 0;
for (cpu = 0; cpu < NR_CPUS; cpu++)
if (cpu_online_map & (1<<cpu))
bogosum += cpu_data[cpu].loops_per_sec;
printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
cpucount+1,
(bogosum+2500)/500000,
((bogosum+2500)/5000)%100);
Dprintk("Before bogocount - setting activated=1.\n");
}
smp_num_cpus = cpucount + 1;
if (smp_b_stepping)
printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
Dprintk("Boot done.\n");
#ifndef CONFIG_VISWS
/*
* Here we can be sure that there is an IO-APIC in the system. Let's
* go and set it up:
*/
if (!skip_ioapic_setup)
setup_IO_APIC();
#endif
/*
* Set up all local APIC timers in the system:
*/
setup_APIC_clocks();
/*
* Synchronize the TSC with the AP
*/
if (cpu_has_tsc && cpucount)
synchronize_tsc_bp();
smp_done:
zap_low_mappings();
}
|