summaryrefslogtreecommitdiffstats
path: root/arch/ia64/mm/init.c
blob: 7615b389ff12c7f28c86070886ed5db8835a316d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*
 * Initialize MMU support.
 *
 * Copyright (C) 1998-2000 Hewlett-Packard Co
 * Copyright (C) 1998-2000 David Mosberger-Tang <davidm@hpl.hp.com>
 */
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>

#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/swap.h>

#include <asm/bitops.h>
#include <asm/dma.h>
#include <asm/efi.h>
#include <asm/ia32.h>
#include <asm/io.h>
#include <asm/machvec.h>
#include <asm/pgalloc.h>
#include <asm/sal.h>
#include <asm/system.h>

/* References to section boundaries: */
extern char _stext, _etext, _edata, __init_begin, __init_end;

/*
 * These are allocated in head.S so that we get proper page alignment.
 * If you change the size of these then change head.S as well.
 */
extern char empty_bad_page[PAGE_SIZE];
extern pmd_t empty_bad_pmd_table[PTRS_PER_PMD];
extern pte_t empty_bad_pte_table[PTRS_PER_PTE];

extern void ia64_tlb_init (void);

static unsigned long totalram_pages;

/*
 * Fill in empty_bad_pmd_table with entries pointing to
 * empty_bad_pte_table and return the address of this PMD table.
 */
static pmd_t *
get_bad_pmd_table (void)
{
	pmd_t v;
	int i;

	pmd_set(&v, empty_bad_pte_table);

	for (i = 0; i < PTRS_PER_PMD; ++i)
		empty_bad_pmd_table[i] = v;

	return empty_bad_pmd_table;
}

/*
 * Fill in empty_bad_pte_table with PTEs pointing to empty_bad_page
 * and return the address of this PTE table.
 */
static pte_t *
get_bad_pte_table (void)
{
	pte_t v;
	int i;

	set_pte(&v, pte_mkdirty(mk_pte_phys(__pa(empty_bad_page), PAGE_SHARED)));

	for (i = 0; i < PTRS_PER_PTE; ++i)
		empty_bad_pte_table[i] = v;

	return empty_bad_pte_table;
}

void
__handle_bad_pgd (pgd_t *pgd)
{
	pgd_ERROR(*pgd);
	pgd_set(pgd, get_bad_pmd_table());
}

void
__handle_bad_pmd (pmd_t *pmd)
{
	pmd_ERROR(*pmd);
	pmd_set(pmd, get_bad_pte_table());
}

/*
 * Allocate and initialize an L3 directory page and set
 * the L2 directory entry PMD to the newly allocated page.
 */
pte_t*
get_pte_slow (pmd_t *pmd, unsigned long offset)
{
	pte_t *pte;

	pte = (pte_t *) __get_free_page(GFP_KERNEL);
	if (pmd_none(*pmd)) {
		if (pte) {
			/* everything A-OK */
			clear_page(pte);
			pmd_set(pmd, pte);
			return pte + offset;
		}
		pmd_set(pmd, get_bad_pte_table());
		return NULL;
	}
	free_page((unsigned long) pte);
	if (pmd_bad(*pmd)) {
		__handle_bad_pmd(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + offset;
}

int
do_check_pgt_cache (int low, int high)
{
	int freed = 0;

        if (pgtable_cache_size > high) {
                do {
                        if (pgd_quicklist)
                                free_page((unsigned long)get_pgd_fast()), ++freed;
                        if (pmd_quicklist)
                                free_page((unsigned long)get_pmd_fast()), ++freed;
                        if (pte_quicklist)
                                free_page((unsigned long)get_pte_fast()), ++freed;
                } while (pgtable_cache_size > low);
        }
        return freed;
}

/*
 * This performs some platform-dependent address space initialization.
 * On IA-64, we want to setup the VM area for the register backing
 * store (which grows upwards) and install the gateway page which is
 * used for signal trampolines, etc.
 */
void
ia64_init_addr_space (void)
{
	struct vm_area_struct *vma;

	/*
	 * If we're out of memory and kmem_cache_alloc() returns NULL,
	 * we simply ignore the problem.  When the process attempts to
	 * write to the register backing store for the first time, it
	 * will get a SEGFAULT in this case.
	 */
	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
	if (vma) {
		vma->vm_mm = current->mm;
		vma->vm_start = IA64_RBS_BOT;
		vma->vm_end = vma->vm_start + PAGE_SIZE;
		vma->vm_page_prot = PAGE_COPY;
		vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP;
		vma->vm_ops = NULL;
		vma->vm_pgoff = 0;
		vma->vm_file = NULL;
		vma->vm_private_data = NULL;
		insert_vm_struct(current->mm, vma);
	}
}

void
free_initmem (void)
{
	unsigned long addr;

	addr = (unsigned long) &__init_begin;
	for (; addr < (unsigned long) &__init_end; addr += PAGE_SIZE) {
		clear_bit(PG_reserved, &virt_to_page(addr)->flags);
		set_page_count(virt_to_page(addr), 1);
		free_page(addr);
		++totalram_pages;
	}
	printk ("Freeing unused kernel memory: %ldkB freed\n",
		(&__init_end - &__init_begin) >> 10);
}

void
free_initrd_mem(unsigned long start, unsigned long end)
{
	/*
	 * EFI uses 4KB pages while the kernel can use 4KB  or bigger.
	 * Thus EFI and the kernel may have different page sizes. It is 
	 * therefore possible to have the initrd share the same page as 
	 * the end of the kernel (given current setup). 
	 *
	 * To avoid freeing/using the wrong page (kernel sized) we:
	 * 	- align up the beginning of initrd
	 *	- keep the end untouched
	 *
	 *  |             |
	 *  |=============| a000
	 *  |             |
	 *  |             |
	 *  |             | 9000
	 *  |/////////////| 
	 *  |/////////////| 
	 *  |=============| 8000
	 *  |///INITRD////|
	 *  |/////////////|
	 *  |/////////////| 7000
	 *  |             |
	 *  |KKKKKKKKKKKKK|
	 *  |=============| 6000
	 *  |KKKKKKKKKKKKK|
	 *  |KKKKKKKKKKKKK| 
	 *  K=kernel using 8KB pages
	 * 
	 * In this example, we must free page 8000 ONLY. So we must align up
	 * initrd_start and keep initrd_end as is.
	 */
	start = PAGE_ALIGN(start);

	if (start < end)
		printk ("Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);

	for (; start < end; start += PAGE_SIZE) {
		clear_bit(PG_reserved, &virt_to_page(start)->flags);
		set_page_count(virt_to_page(start), 1);
		free_page(start);
		++totalram_pages;
	}
}

void
si_meminfo (struct sysinfo *val)
{
	val->totalram = totalram_pages;
	val->sharedram = 0;
	val->freeram = nr_free_pages();
	val->bufferram = atomic_read(&buffermem_pages);
	val->totalhigh = 0;
	val->freehigh = 0;
	val->mem_unit = PAGE_SIZE;
	return;
}

void
show_mem (void)
{
	int i, total = 0, reserved = 0;
	int shared = 0, cached = 0;

	printk("Mem-info:\n");
	show_free_areas();
	printk("Free swap:       %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
	i = max_mapnr;
	while (i-- > 0) {
		total++;
		if (PageReserved(mem_map+i))
			reserved++;
		else if (PageSwapCache(mem_map+i))
			cached++;
		else if (page_count(mem_map + i))
			shared += page_count(mem_map + i) - 1;
	}
	printk("%d pages of RAM\n", total);
	printk("%d reserved pages\n", reserved);
	printk("%d pages shared\n", shared);
	printk("%d pages swap cached\n", cached);
	printk("%ld pages in page table cache\n", pgtable_cache_size);
	show_buffers();
}

/*
 * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection
 * (execute-only, typically).
 */
struct page *
put_gate_page (struct page *page, unsigned long address)
{
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;

	if (!PageReserved(page))
		printk("put_gate_page: gate page at 0x%p not in reserved memory\n",
		       page_address(page));

	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
	pmd = pmd_alloc(pgd, address);
	if (!pmd) {
		__free_page(page);
		panic("Out of memory.");
		return 0;
	}
	pte = pte_alloc(pmd, address);
	if (!pte) {
		__free_page(page);
		panic("Out of memory.");
		return 0;
	}
	if (!pte_none(*pte)) {
		pte_ERROR(*pte);
		__free_page(page);
		return 0;
	}
	flush_page_to_ram(page);
	set_pte(pte, mk_pte(page, PAGE_GATE));
	/* no need for flush_tlb */
	return page;
}

void __init
ia64_rid_init (void)
{
	unsigned long flags, rid, pta, impl_va_bits;
#ifdef CONFIG_DISABLE_VHPT
#	define VHPT_ENABLE_BIT	0
#else
#	define VHPT_ENABLE_BIT	1
#endif

	/* Set up the kernel identity mappings (regions 6 & 7) and the vmalloc area (region 5): */
	ia64_clear_ic(flags);

	rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET);
	ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (_PAGE_SIZE_256M << 2));

	rid = ia64_rid(IA64_REGION_ID_KERNEL, PAGE_OFFSET);
	ia64_set_rr(PAGE_OFFSET, (rid << 8) | (_PAGE_SIZE_256M << 2));

	rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START);
	ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1);

	__restore_flags(flags);

	/*
	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
	 * virtual address space are implemented but if we pick a large enough page size
	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
	 * problem in practice.  Alternatively, we could truncate the top of the mapped
	 * address space to not permit mappings that would overlap with the VMLPT.
	 * --davidm 00/12/06
	 */
#	define pte_bits			3
#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
	/*
	 * The virtual page table has to cover the entire implemented address space within
	 * a region even though not all of this space may be mappable.  The reason for
	 * this is that the Access bit and Dirty bit fault handlers perform
	 * non-speculative accesses to the virtual page table, so the address range of the
	 * virtual page table itself needs to be covered by virtual page table.
	 */
#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
#	define POW2(n)			(1ULL << (n))

	impl_va_bits = ffz(~my_cpu_data.unimpl_va_mask);

	if (impl_va_bits < 51 || impl_va_bits > 61)
		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);

	/* place the VMLPT at the end of each page-table mapped region: */
	pta = POW2(61) - POW2(vmlpt_bits);

	if (POW2(mapped_space_bits) >= pta)
		panic("mm/init: overlap between virtually mapped linear page table and "
		      "mapped kernel space!");
	/*
	 * Set the (virtually mapped linear) page table address.  Bit
	 * 8 selects between the short and long format, bits 2-7 the
	 * size of the table, and bit 0 whether the VHPT walker is
	 * enabled.
	 */
	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
}

/*
 * Set up the page tables.
 */
void
paging_init (void)
{
	unsigned long max_dma, zones_size[MAX_NR_ZONES];

	clear_page((void *) ZERO_PAGE_ADDR);

	/* initialize mem_map[] */

	memset(zones_size, 0, sizeof(zones_size));

	max_dma = (PAGE_ALIGN(MAX_DMA_ADDRESS) >> PAGE_SHIFT);
	if (max_low_pfn < max_dma)
		zones_size[ZONE_DMA] = max_low_pfn;
	else {
		zones_size[ZONE_DMA] = max_dma;
		zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
	}
	free_area_init(zones_size);
}

static int
count_pages (u64 start, u64 end, void *arg)
{
	unsigned long *count = arg;

	*count += (end - start) >> PAGE_SHIFT;
	return 0;
}

static int
count_reserved_pages (u64 start, u64 end, void *arg)
{
	unsigned long num_reserved = 0;
	unsigned long *count = arg;
	struct page *pg;

	for (pg = virt_to_page(start); pg < virt_to_page(end); ++pg)
		if (PageReserved(pg))
			++num_reserved;
	*count += num_reserved;
	return 0;
}

void
mem_init (void)
{
	extern char __start_gate_section[];
	long reserved_pages, codesize, datasize, initsize;

#ifdef CONFIG_PCI
	/*
	 * This needs to be called _after_ the command line has been parsed but _before_
	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
	 * been freed.
	 */
	platform_pci_dma_init();
#endif

	if (!mem_map)
		BUG();

	num_physpages = 0;
	efi_memmap_walk(count_pages, &num_physpages);

	max_mapnr = max_low_pfn;
	high_memory = __va(max_low_pfn * PAGE_SIZE);

	totalram_pages += free_all_bootmem();

	reserved_pages = 0;
	efi_memmap_walk(count_reserved_pages, &reserved_pages);

	codesize =  (unsigned long) &_etext - (unsigned long) &_stext;
	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;

	printk("Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n",
	       (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
	       max_mapnr << (PAGE_SHIFT - 10), codesize >> 10, reserved_pages << (PAGE_SHIFT - 10),
	       datasize >> 10, initsize >> 10);

	/* install the gate page in the global page table: */
	put_gate_page(virt_to_page(__start_gate_section), GATE_ADDR);

#ifdef CONFIG_IA32_SUPPORT
	ia32_gdt_init();
#endif
}