summaryrefslogtreecommitdiffstats
path: root/arch/mips/ddb5xxx/common/rtc_ds1386.c
blob: ff1d81c6059c8b3602c4dd586c62ecc452f61468 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/***********************************************************************
 *
 * Copyright 2001 MontaVista Software Inc.
 * Author: jsun@mvista.com or jsun@junsun.net
 *
 * arch/mips/ddb5xxx/common/rtc_ds1386.c
 *     low-level RTC hookups for s for Dallas 1396 chip.
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 *
 ***********************************************************************
 */


/*
 * This file exports a function, rtc_ds1386_init(), which expects an
 * uncached base address as the argument.  It will set the two function
 * pointers expected by the MIPS generic timer code.
 */

#include <linux/types.h>
#include <linux/time.h>
#include <linux/rtc.h>

#include <asm/time.h>
#include <asm/addrspace.h>

#include <asm/ddb5xxx/debug.h>

#define	EPOCH		2000

#undef BCD_TO_BIN
#define BCD_TO_BIN(val) (((val)&15) + ((val)>>4)*10)

#undef BIN_TO_BCD
#define BIN_TO_BCD(val) ((((val)/10)<<4) + (val)%10)

#define	READ_RTC(x)	*(volatile unsigned char*)(rtc_base+x)
#define	WRITE_RTC(x, y)	*(volatile unsigned char*)(rtc_base+x) = y

static unsigned long rtc_base;

static unsigned long
rtc_ds1386_get_time(void)
{	
	u8 byte;
	u8 temp;
	unsigned int year, month, day, hour, minute, second;

	/* let us freeze external registers */
	byte = READ_RTC(0xB);
	byte &= 0x3f;
	WRITE_RTC(0xB, byte);

	/* read time data */
	year = BCD_TO_BIN(READ_RTC(0xA)) + EPOCH;
	month = BCD_TO_BIN(READ_RTC(0x9) & 0x1f);
	day = BCD_TO_BIN(READ_RTC(0x8));
	minute = BCD_TO_BIN(READ_RTC(0x2));
	second = BCD_TO_BIN(READ_RTC(0x1));

	/* hour is special - deal with it later */
	temp = READ_RTC(0x4);

	/* enable time transfer */
	byte |= 0x80;
	WRITE_RTC(0xB, byte);

	/* calc hour */
	if (temp & 0x40) {
		/* 12 hour format */
		hour = BCD_TO_BIN(temp & 0x1f);
		if (temp & 0x20) hour += 12; 		/* PM */
	} else {
		/* 24 hour format */
		hour = BCD_TO_BIN(temp & 0x3f);
	}

	return mktime(year, month, day, hour, minute, second);
}

void to_tm(unsigned long tim, struct rtc_time * tm);
static int 
rtc_ds1386_set_time(unsigned long t)
{
	struct rtc_time tm;
	u8 byte;
	u8 temp;
	u8 year, month, day, hour, minute, second;

	/* let us freeze external registers */
	byte = READ_RTC(0xB);
	byte &= 0x3f;
	WRITE_RTC(0xB, byte);

	/* convert */
	to_tm(t, &tm);

	/* check each field one by one */
	year = BIN_TO_BCD(tm.tm_year - EPOCH);
	if (year != READ_RTC(0xA)) {
		WRITE_RTC(0xA, year);
	}

	temp = READ_RTC(0x9);
	month = BIN_TO_BCD(tm.tm_mon);
	if (month != (temp & 0x1f)) {
		WRITE_RTC( 0x9,
			   (month & 0x1f) | (temp & ~0x1f) );
	}

	day = BIN_TO_BCD(tm.tm_mday);
	if (day != READ_RTC(0x8)) {
		WRITE_RTC(0x8, day);
	}

	temp = READ_RTC(0x4);
	if (temp & 0x40) {
		/* 12 hour format */
		hour = 0x40;
		if (tm.tm_hour > 12) {
			hour |= 0x20 | (BIN_TO_BCD(hour-12) & 0x1f);
		} else {
			hour |= BIN_TO_BCD(tm.tm_hour);
		}
	} else {
		/* 24 hour format */
		hour = BIN_TO_BCD(tm.tm_hour) & 0x3f;
	}
	if (hour != temp) WRITE_RTC(0x4, hour);

	minute = BIN_TO_BCD(tm.tm_min);
	if (minute != READ_RTC(0x2)) {
		WRITE_RTC(0x2, minute);
	}

	second = BIN_TO_BCD(tm.tm_sec);
	if (second != READ_RTC(0x1)) {
		WRITE_RTC(0x1, second);
	}
	
	return 0;
}

void
rtc_ds1386_init(unsigned long base)
{
	unsigned char byte;
	
	/* remember the base */
	rtc_base = base;
	MIPS_ASSERT((rtc_base & 0xe0000000) == KSEG1);

	/* turn on RTC if it is not on */
	byte = READ_RTC(0x9);
	if (byte & 0x80) {
		byte &= 0x7f;
		WRITE_RTC(0x9, byte);
	}

	/* enable time transfer */
	byte = READ_RTC(0xB);
	byte |= 0x80;
	WRITE_RTC(0xB, byte);

	/* set the function pointers */
	rtc_get_time = rtc_ds1386_get_time;
	rtc_set_time = rtc_ds1386_set_time;
}


/* ================================================== */
#define TICK_SIZE tick
#define FEBRUARY        2
#define STARTOFTIME     1970
#define SECDAY          86400L
#define SECYR           (SECDAY * 365)
#define leapyear(year)          ((year) % 4 == 0)
#define days_in_year(a)         (leapyear(a) ? 366 : 365)
#define days_in_month(a)        (month_days[(a) - 1])

static int month_days[12] = {
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
static void 
GregorianDay(struct rtc_time * tm)
{
        int leapsToDate;
        int lastYear;
        int day;
        int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

        lastYear=tm->tm_year-1;

        /*
         * Number of leap corrections to apply up to end of last year
         */
        leapsToDate = lastYear/4 - lastYear/100 + lastYear/400;

        /*
         * This year is a leap year if it is divisible by 4 except when it is
         * divisible by 100 unless it is divisible by 400
         *
         * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be
         */
        if((tm->tm_year%4==0) &&
           ((tm->tm_year%100!=0) || (tm->tm_year%400==0)) &&
           (tm->tm_mon>2))
        {
                /*
                 * We are past Feb. 29 in a leap year
                 */
                day=1;
        }
        else
        {
                day=0;
        }

        day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
                   tm->tm_mday;

        tm->tm_wday=day%7;
}


void to_tm(unsigned long tim, struct rtc_time * tm)
{
        register int    i;
        register long   hms, day;

        day = tim / SECDAY;
        hms = tim % SECDAY;

        /* Hours, minutes, seconds are easy */
        tm->tm_hour = hms / 3600;
        tm->tm_min = (hms % 3600) / 60;
        tm->tm_sec = (hms % 3600) % 60;

        /* Number of years in days */
        for (i = STARTOFTIME; day >= days_in_year(i); i++)
                day -= days_in_year(i);
        tm->tm_year = i;

        /* Number of months in days left */
        if (leapyear(tm->tm_year))
                days_in_month(FEBRUARY) = 29;
        for (i = 1; day >= days_in_month(i); i++)
                day -= days_in_month(i);
        days_in_month(FEBRUARY) = 28;
        tm->tm_mon = i;

        /* Days are what is left over (+1) from all that. */
        tm->tm_mday = day + 1;

        /*
         * Determine the day of week
         */
        GregorianDay(tm);
}