summaryrefslogtreecommitdiffstats
path: root/arch/ppc/8xx_io/commproc.c
blob: 19d7f3dd1ae3dc7ef8e43332caa03701edd785f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

/*
 * General Purpose functions for the global management of the
 * Communication Processor Module.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
 * In addition to the individual control of the communication
 * channels, there are a few functions that globally affect the
 * communication processor.
 *
 * Buffer descriptors must be allocated from the dual ported memory
 * space.  The allocator for that is here.  When the communication
 * process is reset, we reclaim the memory available.  There is
 * currently no deallocator for this memory.
 * The amount of space available is platform dependent.  On the
 * MBX, the EPPC software loads additional microcode into the
 * communication processor, and uses some of the DP ram for this
 * purpose.  Current, the first 512 bytes and the last 256 bytes of
 * memory are used.  Right now I am conservative and only use the
 * memory that can never be used for microcode.  If there are
 * applications that require more DP ram, we can expand the boundaries
 * but then we have to be careful of any downloaded microcode.
 */
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <asm/irq.h>
#include <asm/mpc8xx.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/8xx_immap.h>
#include "commproc.h"

static	uint	dp_alloc_base;	/* Starting offset in DP ram */
static	uint	dp_alloc_top;	/* Max offset + 1 */
static	uint	host_buffer;	/* One page of host buffer */
static	uint	host_end;	/* end + 1 */
cpm8xx_t	*cpmp;		/* Pointer to comm processor space */

/* CPM interrupt vector functions.
*/
struct	cpm_action {
	void	(*handler)(void *);
	void	*dev_id;
};
static	struct	cpm_action cpm_vecs[CPMVEC_NR];
static	void	cpm_interrupt(int irq, void * dev, struct pt_regs * regs);
static	void	cpm_error_interrupt(void *);

void
m8xx_cpm_reset(uint host_page_addr)
{
	volatile immap_t	 *imp;
	volatile cpm8xx_t	*commproc;
	pte_t			*pte;

	imp = (immap_t *)IMAP_ADDR;
	commproc = (cpm8xx_t *)&imp->im_cpm;

	/* Set SDMA Bus Request priority 5.
	 * On 860T, this also enables FEC priority 6.  I am not sure
	 * this is what we realy want for some applications, but the
	 * manual recommends it.
	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
	*/
	imp->im_siu_conf.sc_sdcr = 1;

	/* Reclaim the DP memory for our use.
	*/
	dp_alloc_base = CPM_DATAONLY_BASE;
	dp_alloc_top = dp_alloc_base + CPM_DATAONLY_SIZE;

	/* Set the host page for allocation.
	*/
	host_buffer = host_page_addr;	/* Host virtual page address */
	host_end = host_page_addr + PAGE_SIZE;
	pte = va_to_pte(host_page_addr);
	pte_val(*pte) |= _PAGE_NO_CACHE;
	flush_tlb_page(init_mm.mmap, host_buffer);

	/* Tell everyone where the comm processor resides.
	*/
	cpmp = (cpm8xx_t *)commproc;
}

/* This is called during init_IRQ.  We used to do it above, but this
 * was too early since init_IRQ was not yet called.
 */
void
cpm_interrupt_init(void)
{
	/* Initialize the CPM interrupt controller.
	*/
	((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr =
	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
		((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK;
	((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr = 0;

	/* Set our interrupt handler with the core CPU.
	*/
	if (request_8xxirq(CPM_INTERRUPT, cpm_interrupt, 0, "cpm", NULL) != 0)
		panic("Could not allocate CPM IRQ!");

	/* Install our own error handler.
	*/
	cpm_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL);
	((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr |= CICR_IEN;
}

/* CPM interrupt controller interrupt.
*/
static	void
cpm_interrupt(int irq, void * dev, struct pt_regs * regs)
{
	uint	vec;

	/* Get the vector by setting the ACK bit and then reading
	 * the register.
	 */
	((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1;
	vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr;
	vec >>= 11;

	if (cpm_vecs[vec].handler != 0)
		(*cpm_vecs[vec].handler)(cpm_vecs[vec].dev_id);
	else
		((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec);

	/* After servicing the interrupt, we have to remove the status
	 * indicator.
	 */
	((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr = (1 << vec);
	
}

/* The CPM can generate the error interrupt when there is a race condition
 * between generating and masking interrupts.  All we have to do is ACK it
 * and return.  This is a no-op function so we don't need any special
 * tests in the interrupt handler.
 */
static	void
cpm_error_interrupt(void *dev)
{
}

/* Install a CPM interrupt handler.
*/
void
cpm_install_handler(int vec, void (*handler)(void *), void *dev_id)
{

	/* If null handler, assume we are trying to free the IRQ.
	*/
	if (!handler) {
		cpm_free_handler(vec);
		return;
	}

	if (cpm_vecs[vec].handler != 0)
		printk("CPM interrupt %x replacing %x\n",
			(uint)handler, (uint)cpm_vecs[vec].handler);
	cpm_vecs[vec].handler = handler;
	cpm_vecs[vec].dev_id = dev_id;
	((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << vec);
}

/* Free a CPM interrupt handler.
*/
void
cpm_free_handler(int vec)
{
	cpm_vecs[vec].handler = NULL;
	cpm_vecs[vec].dev_id = NULL;
	((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec);
}

/* Allocate some memory from the dual ported ram.  We may want to
 * enforce alignment restrictions, but right now everyone is a good
 * citizen.
 */
uint
m8xx_cpm_dpalloc(uint size)
{
	uint	retloc;

	if ((dp_alloc_base + size) >= dp_alloc_top)
		return(CPM_DP_NOSPACE);

	retloc = dp_alloc_base;
	dp_alloc_base += size;

	return(retloc);
}

/* We also own one page of host buffer space for the allocation of
 * UART "fifos" and the like.
 */
uint
m8xx_cpm_hostalloc(uint size)
{
	uint	retloc;

	if ((host_buffer + size) >= host_end)
		return(0);

	retloc = host_buffer;
	host_buffer += size;

	return(retloc);
}

/* Set a baud rate generator.  This needs lots of work.  There are
 * four BRGs, any of which can be wired to any channel.
 * The internal baud rate clock is the system clock divided by 16.
 * This assumes the baudrate is 16x oversampled by the uart.
 */
#define BRG_INT_CLK		(((bd_t *)__res)->bi_intfreq * 1000000)
#define BRG_UART_CLK		(BRG_INT_CLK/16)
#define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)

void
m8xx_cpm_setbrg(uint brg, uint rate)
{
	volatile uint	*bp;

	/* This is good enough to get SMCs running.....
	*/
	bp = (uint *)&cpmp->cp_brgc1;
	bp += brg;
	/* The BRG has a 12-bit counter.  For really slow baud rates (or
	 * really fast processors), we may have to further divide by 16.
	 */
	if (((BRG_UART_CLK / rate) - 1) < 4096)
		*bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN;
	else
		*bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
						CPM_BRG_EN | CPM_BRG_DIV16;
}