1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
|
/*
* Fast Ethernet Controller (FECC) driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* This version of the driver is specific to the FADS implementation,
* since the board contains control registers external to the processor
* for the control of the LevelOne LXT970 transceiver. The MPC860T manual
* describes connections using the internal parallel port I/O, which
* is basically all of Port D.
*
* Right now, I am very watseful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/malloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/fads.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/uaccess.h>
#include "commproc.h"
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it it best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#if 1
#define FEC_ENET_RX_PAGES 4
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE 8 /* Must be power of two */
#define TX_RING_MOD_MASK 7 /* for this to work */
#else
#define FEC_ENET_RX_PAGES 16
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
#endif
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
/* The FEC stores dest/src/type, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1518
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct fec_enet_private {
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses.
*/
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
scc_t *sccp;
struct net_device_stats stats;
char tx_full;
unsigned long lock;
};
static int fec_enet_open(struct device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct device *dev);
static int fec_enet_rx(struct device *dev);
static void fec_enet_mii(struct device *dev);
static void fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
static int fec_enet_close(struct device *dev);
static struct net_device_stats *fec_enet_get_stats(struct device *dev);
static void set_multicast_list(struct device *dev);
static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };
/* MII processing. We keep this as simple as possible. Requests are
* placed on the list (if there is room). When the request is finished
* by the MII, an optional function may be called.
*/
typedef struct mii_list {
uint mii_regval;
void (*mii_func)(uint val);
struct mii_list *mii_next;
} mii_list_t;
#define NMII 10
mii_list_t mii_cmds[NMII];
mii_list_t *mii_free;
mii_list_t *mii_head;
mii_list_t *mii_tail;
static int mii_queue(int request, void (*func)(int));
/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
static int
fec_enet_open(struct device *dev)
{
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
dev->tbusy = 0;
dev->interrupt = 0;
dev->start = 1;
return 0; /* Always succeed */
}
static int
fec_enet_start_xmit(struct sk_buff *skb, struct device *dev)
{
struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
volatile cbd_t *bdp;
unsigned long flags;
/* Transmitter timeout, serious problems. */
if (dev->tbusy) {
int tickssofar = jiffies - dev->trans_start;
if (tickssofar < 20)
return 1;
printk("%s: transmit timed out.\n", dev->name);
fep->stats.tx_errors++;
#ifndef final_version
{
int i;
cbd_t *bdp;
printk(" Ring data dump: cur_tx %x%s cur_rx %x.\n",
fep->cur_tx, fep->tx_full ? " (full)" : "",
fep->cur_rx);
bdp = fep->tx_bd_base;
for (i = 0 ; i < TX_RING_SIZE; i++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
bdp = fep->rx_bd_base;
for (i = 0 ; i < RX_RING_SIZE; i++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
}
#endif
dev->tbusy=0;
dev->trans_start = jiffies;
return 0;
}
/* Block a timer-based transmit from overlapping. This could better be
done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
printk("%s: Transmitter access conflict.\n", dev->name);
return 1;
}
if (test_and_set_bit(0, (void*)&fep->lock) != 0) {
printk("%s: tx queue lock!.\n", dev->name);
/* don't clear dev->tbusy flag. */
return 1;
}
/* Fill in a Tx ring entry */
bdp = fep->cur_tx;
#ifndef final_version
if (bdp->cbd_sc & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since dev->tbusy should be set.
*/
printk("%s: tx queue full!.\n", dev->name);
fep->lock = 0;
return 1;
}
#endif
/* Clear all of the status flags.
*/
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
/* Set buffer length and buffer pointer.
*/
bdp->cbd_bufaddr = __pa(skb->data);
bdp->cbd_datlen = skb->len;
/* Save skb pointer.
*/
fep->tx_skbuff[fep->skb_cur] = skb;
fep->stats.tx_bytes += skb->len;
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
/*flush_dcache_range(skb->data, skb->data + skb->len);*/
/* Send it on its way. Tell CPM its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
save_flags(flags);
cli();
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
dev->trans_start = jiffies;
(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_x_des_active = 0x01000000;
/* If this was the last BD in the ring, start at the beginning again.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
else
bdp++;
fep->lock = 0;
if (bdp->cbd_sc & BD_ENET_TX_READY)
fep->tx_full = 1;
else
dev->tbusy=0;
restore_flags(flags);
fep->cur_tx = (cbd_t *)bdp;
return 0;
}
/* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static void
fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
struct device *dev = dev_id;
struct fec_enet_private *fep;
volatile cbd_t *bdp;
volatile fec_t *ep;
uint int_events;
int c=0;
fep = (struct fec_enet_private *)dev->priv;
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
if (dev->interrupt)
printk("%s: Re-entering the interrupt handler.\n", dev->name);
dev->interrupt = 1;
/* Get the interrupt events that caused us to be here.
*/
while ((int_events = ep->fec_ievent) != 0) {
ep->fec_ievent = int_events;
if ((int_events &
(FEC_ENET_HBERR | FEC_ENET_BABR |
FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
printk("FEC ERROR %x\n", int_events);
/* Handle receive event in its own function.
*/
if (int_events & (FEC_ENET_RXF | FEC_ENET_RXB))
fec_enet_rx(dev_id);
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
* FEC handles all errors, we just discover them as part of the
* transmit process.
*/
if (int_events & (FEC_ENET_TXF | FEC_ENET_TXB)) {
bdp = fep->dirty_tx;
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
#if 1
if (bdp==fep->cur_tx)
break;
#endif
if (++c>1) {/*we go here when an it has been lost*/};
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
fep->stats.tx_errors++;
fep->stats.tx_packets++;
#ifndef final_version
if (bdp->cbd_sc & BD_ENET_TX_READY)
printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (bdp->cbd_sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb(fep->tx_skbuff[fep->skb_dirty]/*, FREE_WRITE*/);
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
else
bdp++;
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (fep->tx_full && dev->tbusy) {
fep->tx_full = 0;
dev->tbusy = 0;
mark_bh(NET_BH);
}
fep->dirty_tx = (cbd_t *)bdp;
#if 0
if (bdp==fep->cur_tx)
break;
#endif
}/*while (bdp->cbd_sc&BD_ENET_TX_READY)==0*/
} /* if tx events */
if (int_events & FEC_ENET_MII)
fec_enet_mii(dev_id);
} /* while any events */
dev->interrupt = 0;
return;
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static int
fec_enet_rx(struct device *dev)
{
struct fec_enet_private *fep;
volatile cbd_t *bdp;
struct sk_buff *skb;
ushort pkt_len;
volatile fec_t *ep;
fep = (struct fec_enet_private *)dev->priv;
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
for (;;) {
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
break;
#ifndef final_version
/* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
printk("FEC ENET: rcv is not +last\n");
#endif
/* Frame too long or too short.
*/
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
fep->stats.rx_frame_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
fep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
fep->stats.rx_crc_errors++;
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if (bdp->cbd_sc & BD_ENET_RX_CL) {
fep->stats.rx_frame_errors++;
}
else {
/* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
fep->stats.rx_bytes += pkt_len;
/* This does 16 byte alignment, exactly what we need.
*/
skb = dev_alloc_skb(pkt_len);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
fep->stats.rx_dropped++;
}
else {
skb->dev = dev;
skb_put(skb,pkt_len); /* Make room */
eth_copy_and_sum(skb,
(unsigned char *)__va(bdp->cbd_bufaddr),
pkt_len, 0);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
}
}
/* Clear the status flags for this buffer.
*/
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty.
*/
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
/* Update BD pointer to next entry.
*/
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
bdp = fep->rx_bd_base;
else
bdp++;
#if 1
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
ep->fec_r_des_active = 0x01000000;
#endif
}
fep->cur_rx = (cbd_t *)bdp;
#if 0
/* Doing this here will allow us to process all frames in the
* ring before the FEC is allowed to put more there. On a heavily
* loaded network, some frames may be lost. Unfortunately, this
* increases the interrupt overhead since we can potentially work
* our way back to the interrupt return only to come right back
* here.
*/
ep->fec_r_des_active = 0x01000000;
#endif
return 0;
}
static void
fec_enet_mii(struct device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *ep;
mii_list_t *mip;
uint mii_reg;
fep = (struct fec_enet_private *)dev->priv;
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
mii_reg = ep->fec_mii_data;
if ((mip = mii_head) == NULL) {
printk("MII and no head!\n");
return;
}
if (mip->mii_func != NULL)
(*(mip->mii_func))(mii_reg);
mii_head = mip->mii_next;
mip->mii_next = mii_free;
mii_free = mip;
if ((mip = mii_head) != NULL)
ep->fec_mii_data = mip->mii_regval;
}
static int
mii_queue(int regval, void (*func)(int))
{
unsigned long flags;
mii_list_t *mip;
int retval;
retval = 0;
save_flags(flags);
cli();
if ((mip = mii_free) != NULL) {
mii_free = mip->mii_next;
mip->mii_regval = regval;
mip->mii_func = func;
mip->mii_next = NULL;
if (mii_head) {
mii_tail->mii_next = mip;
mii_tail = mip;
}
else {
mii_head = mii_tail = mip;
(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
}
}
else {
retval = 1;
}
restore_flags(flags);
return(retval);
}
static void
mii_status(uint mii_reg)
{
if (((mii_reg >> 18) & 0x1f) == 1) {
/* status register.
*/
printk("fec: ");
if (mii_reg & 0x0004)
printk("link up");
else
printk("link down");
if (mii_reg & 0x0010)
printk(",remote fault");
if (mii_reg & 0x0020)
printk(",auto complete");
printk("\n");
}
if (((mii_reg >> 18) & 0x1f) == 0x14) {
/* Extended chip status register.
*/
printk("fec: ");
if (mii_reg & 0x0800)
printk("100 Mbps");
else
printk("10 Mbps");
if (mii_reg & 0x1000)
printk(", Full-Duplex\n");
else
printk(", Half-Duplex\n");
}
}
static void
mii_startup_cmds(void)
{
/* Read status registers to clear any pending interrupt.
*/
mii_queue(mk_mii_read(1), mii_status);
mii_queue(mk_mii_read(18), mii_status);
/* Read extended chip status register.
*/
mii_queue(mk_mii_read(0x14), mii_status);
/* Enable Link status change interrupts.
mii_queue(mk_mii_write(0x11, 0x0002), NULL);
*/
}
/* This supports the mii_link interrupt below.
* We should get called three times. Once for register 1, once for
* register 18, and once for register 20.
*/
static uint mii_saved_reg1;
static void
mii_relink(uint mii_reg)
{
if (((mii_reg >> 18) & 0x1f) == 1) {
/* Just save the status register and get out.
*/
mii_saved_reg1 = mii_reg;
return;
}
if (((mii_reg >> 18) & 0x1f) == 18) {
/* Not much here, but has to be read to clear the
* interrupt condition.
*/
if ((mii_reg & 0x8000) == 0)
printk("fec: re-link and no IRQ?\n");
if ((mii_reg & 0x4000) == 0)
printk("fec: no PHY power?\n");
}
if (((mii_reg >> 18) & 0x1f) == 20) {
/* Extended chip status register.
* OK, now we have it all, so figure out what is going on.
*/
printk("fec: ");
if (mii_saved_reg1 & 0x0004)
printk("link up");
else
printk("link down");
if (mii_saved_reg1 & 0x0010)
printk(", remote fault");
if (mii_saved_reg1 & 0x0020)
printk(", auto complete");
if (mii_reg & 0x0800)
printk(", 100 Mbps");
else
printk(", 10 Mbps");
if (mii_reg & 0x1000)
printk(", Full-Duplex\n");
else
printk(", Half-Duplex\n");
}
}
/* This interrupt occurs when the LTX970 detects a link change.
*/
static void
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
struct device *dev = dev_id;
struct fec_enet_private *fep;
volatile fec_t *ep;
fep = (struct fec_enet_private *)dev->priv;
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
/* We need to sequentially read registers 1 and 18 to clear
* the interrupt. We don't need to do that here because this
* is an edge triggered interrupt that has already been acknowledged
* by the top level handler. We also read the extended status
* register 20. We just queue the commands and let them happen
* as part of the "normal" processing.
*/
mii_queue(mk_mii_read(1), mii_relink);
mii_queue(mk_mii_read(18), mii_relink);
mii_queue(mk_mii_read(20), mii_relink);
}
static int
fec_enet_close(struct device *dev)
{
/* Don't know what to do yet.
*/
return 0;
}
static struct net_device_stats *fec_enet_get_stats(struct device *dev)
{
struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
return &fep->stats;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void set_multicast_list(struct device *dev)
{
struct fec_enet_private *fep;
struct dev_mc_list *dmi;
u_char *mcptr, *tdptr;
volatile fec_t *ep;
int i, j;
fep = (struct fec_enet_private *)dev->priv;
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
if (dev->flags&IFF_PROMISC) {
/* Log any net taps. */
printk("%s: Promiscuous mode enabled.\n", dev->name);
ep->fec_r_cntrl |= 0x0008;
} else {
ep->fec_r_cntrl &= ~0x0008;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep->fec_hash_table_high = 0xffffffff;
ep->fec_hash_table_low = 0xffffffff;
}
#if 0
else {
/* Clear filter and add the addresses in the list.
*/
ep->sen_gaddr1 = 0;
ep->sen_gaddr2 = 0;
ep->sen_gaddr3 = 0;
ep->sen_gaddr4 = 0;
dmi = dev->mc_list;
for (i=0; i<dev->mc_count; i++) {
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1))
continue;
/* The address in dmi_addr is LSB first,
* and taddr is MSB first. We have to
* copy bytes MSB first from dmi_addr.
*/
mcptr = (u_char *)dmi->dmi_addr + 5;
tdptr = (u_char *)&ep->sen_taddrh;
for (j=0; j<6; j++)
*tdptr++ = *mcptr--;
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
/* this delay is necessary here -- Cort */
udelay(10);
while (cpmp->cp_cpcr & CPM_CR_FLG);
}
}
#endif
}
}
/* Initialize the FECC Ethernet on 860T.
*/
__initfunc(int m8xx_enet_init(void))
{
struct device *dev;
struct fec_enet_private *fep;
int i, j;
unsigned char *eap;
unsigned long mem_addr;
pte_t *pte;
volatile cbd_t *bdp;
cbd_t *cbd_base;
volatile immap_t *immap;
volatile fec_t *fecp;
unsigned char rtc_save_cfg, rtc_val;
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
/* Allocate some private information.
*/
fep = (struct fec_enet_private *)kmalloc(sizeof(*fep), GFP_KERNEL);
__clear_user(fep,sizeof(*fep));
/* Create an Ethernet device instance.
*/
dev = init_etherdev(0, 0);
fecp = &(immap->im_cpm.cp_fec);
/* Whack a reset. We should wait for this.
*/
fecp->fec_ecntrl = 1;
udelay(10);
/* Enable interrupts we wish to service.
*/
fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
/* Clear any outstanding interrupt.
*/
fecp->fec_ievent = 0xffc0;
fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
/* Set station address.
*/
fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
fecp->fec_addr_high = my_enet_addr[2];
eap = (unsigned char *)&my_enet_addr[0];
for (i=0; i<6; i++)
dev->dev_addr[i] = *eap++;
/* Reset all multicast.
*/
fecp->fec_hash_table_high = 0;
fecp->fec_hash_table_low = 0;
/* Set maximum receive buffer size.
*/
fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
fecp->fec_r_hash = PKT_MAXBUF_SIZE;
/* Allocate memory for buffer descriptors.
*/
if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
printk("FECC init error. Need more space.\n");
printk("FECC initialization failed.\n");
return 1;
}
mem_addr = __get_free_page(GFP_KERNEL);
cbd_base = (cbd_t *)mem_addr;
/* Make it uncached.
*/
pte = va_to_pte(&init_task, (int)mem_addr);
pte_val(*pte) |= _PAGE_NO_CACHE;
flush_tlb_page(current->mm->mmap, mem_addr);
/* Set receive and transmit descriptor base.
*/
fecp->fec_r_des_start = __pa(mem_addr);
fep->rx_bd_base = cbd_base;
fecp->fec_x_des_start = __pa((unsigned long)(cbd_base + RX_RING_SIZE));
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->cur_rx = fep->rx_bd_base;
fep->skb_cur = fep->skb_dirty = 0;
/* Initialize the receive buffer descriptors.
*/
bdp = fep->rx_bd_base;
for (i=0; i<FEC_ENET_RX_PAGES; i++) {
/* Allocate a page.
*/
mem_addr = __get_free_page(GFP_KERNEL);
/* Make it uncached.
*/
pte = va_to_pte(&init_task, mem_addr);
pte_val(*pte) |= _PAGE_NO_CACHE;
flush_tlb_page(current->mm->mmap, mem_addr);
/* Initialize the BD for every fragment in the page.
*/
for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp->cbd_bufaddr = __pa(mem_addr);
mem_addr += FEC_ENET_RX_FRSIZE;
bdp++;
}
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* ...and the same for transmmit.
*/
bdp = fep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Enable MII mode, half-duplex until we know better..
*/
fecp->fec_r_cntrl = 0x0c;
fecp->fec_x_cntrl = 0x00;
/* Enable big endian and don't care about SDMA FC.
*/
fecp->fec_fun_code = 0x78000000;
/* Set MII speed (50 MHz core).
*/
fecp->fec_mii_speed = 0x14;
/* Configure all of port D for MII.
*/
immap->im_ioport.iop_pdpar = 0x1fff;
immap->im_ioport.iop_pddir = 0x1c58;
/* Install our interrupt handlers. The 860T FADS board uses
* IRQ2 for the MII interrupt.
*/
if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
panic("Could not allocate FEC IRQ!");
if (request_irq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
panic("Could not allocate MII IRQ!");
dev->base_addr = (unsigned long)fecp;
dev->priv = fep;
dev->name = "fec";
/* The FEC Ethernet specific entries in the device structure. */
dev->open = fec_enet_open;
dev->hard_start_xmit = fec_enet_start_xmit;
dev->stop = fec_enet_close;
dev->get_stats = fec_enet_get_stats;
dev->set_multicast_list = set_multicast_list;
/* And last, enable the transmit and receive processing.
*/
fecp->fec_ecntrl = 2;
fecp->fec_r_des_active = 0x01000000;
printk("FEC ENET Version 0.1, ");
for (i=0; i<5; i++)
printk("%02x:", dev->dev_addr[i]);
printk("%02x\n", dev->dev_addr[5]);
for (i=0; i<NMII-1; i++)
mii_cmds[i].mii_next = &mii_cmds[i+1];
mii_free = mii_cmds;
mii_startup_cmds();
return 0;
}
|