summaryrefslogtreecommitdiffstats
path: root/arch/s390/kernel/smp.c
blob: 6cf2e6918e127dea85d3b572231cd655a6ffaf92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 *  arch/s390/kernel/smp.c
 *
 *  S390 version
 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
 *
 *  based on other smp stuff by 
 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
 *    (c) 1998 Ingo Molnar
 *
 * We work with logical cpu numbering everywhere we can. The only
 * functions using the real cpu address (got from STAP) are the sigp
 * functions. For all other functions we use the identity mapping.
 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
 * used e.g. to find the idle task belonging to a logical cpu. Every array
 * in the kernel is sorted by the logical cpu number and not by the physical
 * one which is causing all the confusion with __cpu_logical_map and
 * cpu_number_map in other architectures.
 */

#include <linux/init.h>

#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <linux/smp_lock.h>

#include <linux/delay.h>

#include <asm/sigp.h>
#include <asm/pgalloc.h>
#include <asm/irq.h>

#include "cpcmd.h"

/* prototypes */
extern void update_one_process( struct task_struct *p,
                                unsigned long ticks, unsigned long user,
                                unsigned long system, int cpu);
extern int cpu_idle(void * unused);

extern __u16 boot_cpu_addr;

/*
 * An array with a pointer the lowcore of every CPU.
 */
static int       max_cpus = NR_CPUS;	  /* Setup configured maximum number of CPUs to activate	*/
int              smp_num_cpus;
struct _lowcore *lowcore_ptr[NR_CPUS];
unsigned int     prof_multiplier[NR_CPUS];
unsigned int     prof_old_multiplier[NR_CPUS];
unsigned int     prof_counter[NR_CPUS];
volatile int     __cpu_logical_map[NR_CPUS]; /* logical cpu to cpu address */
cycles_t         cacheflush_time=0;
int              smp_threads_ready=0;      /* Set when the idlers are all forked. */
unsigned long    ipi_count=0;              /* Number of IPIs delivered. */
static atomic_t  smp_commenced = ATOMIC_INIT(0);

spinlock_t       kernel_flag = SPIN_LOCK_UNLOCKED;

/*
 *      Setup routine for controlling SMP activation
 *
 *      Command-line option of "nosmp" or "maxcpus=0" will disable SMP
 *      activation entirely (the MPS table probe still happens, though).
 *
 *      Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
 *      greater than 0, limits the maximum number of CPUs activated in
 *      SMP mode to <NUM>.
 */

static int __init nosmp(char *str)
{
	max_cpus = 0;
	return 1;
}

__setup("nosmp", nosmp);

static int __init maxcpus(char *str)
{
	get_option(&str, &max_cpus);
	return 1;
}

__setup("maxcpus=", maxcpus);

/*
 * Reboot, halt and power_off routines for SMP.
 */
extern char vmhalt_cmd[];
extern char vmpoff_cmd[];

extern void reipl(unsigned long devno);

void do_machine_restart(void)
{
        smp_send_stop();
	reipl(S390_lowcore.ipl_device);
}

void machine_restart(char * __unused) 
{
        if (smp_processor_id() != 0) {
                smp_ext_call_async(0, ec_restart);
                for (;;);
        } else
                do_machine_restart();
}

void do_machine_halt(void)
{
        smp_send_stop();
        if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
                cpcmd(vmhalt_cmd, NULL, 0);
        disabled_wait(0);
}

void machine_halt(void)
{
        if (smp_processor_id() != 0) {
                smp_ext_call_async(0, ec_halt);
                for (;;);
        } else
                do_machine_halt();
}

void do_machine_power_off(void)
{
        smp_send_stop();
        if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
                cpcmd(vmpoff_cmd, NULL, 0);
        disabled_wait(0);
}

void machine_power_off(void)
{
        if (smp_processor_id() != 0) {
                smp_ext_call_async(0, ec_power_off);
                for (;;);
        } else
                do_machine_power_off();
}

/*
 * This is the main routine where commands issued by other
 * cpus are handled.
 */

void do_ext_call_interrupt(__u16 source_cpu_addr)
{
        ec_ext_call *ec, *next;
        int bits;

        /*
         * handle bit signal external calls
         *
         * For the ec_schedule signal we have to do nothing. All the work
         * is done automatically when we return from the interrupt.
	 * For the ec_restart, ec_halt and ec_power_off we call the
         * appropriate routine.
         */
        do {
                bits = atomic_read(&S390_lowcore.ext_call_fast);
        } while (atomic_compare_and_swap(bits,0,&S390_lowcore.ext_call_fast));

        if (test_bit(ec_restart, &bits))
		do_machine_restart();
        if (test_bit(ec_halt, &bits))
		do_machine_halt();
        if (test_bit(ec_power_off, &bits))
		do_machine_power_off();

        /*
         * Handle external call commands with a parameter area
         */
        do {
                ec = (ec_ext_call *) atomic_read(&S390_lowcore.ext_call_queue);
        } while (atomic_compare_and_swap((int) ec, 0,
                                         &S390_lowcore.ext_call_queue));
        if (ec == NULL)
                return;   /* no command signals */

        /* Make a fifo out of the lifo */
        next = ec;
        ec->next = NULL;
        while (next != NULL) {
                ec_ext_call *tmp = next->next;
                next->next = ec;
                ec = next;
                next = tmp;
        }

        /* Execute every sigp command on the queue */
        while (ec != NULL) {
                switch (ec->cmd) {
                case ec_get_ctl: {
                        ec_creg_parms *pp;
                        pp = (ec_creg_parms *) ec->parms;
                        atomic_set(&ec->status,ec_executing);
                        asm volatile (
                                "   bras  1,0f\n"
                                "   stctl 0,0,0(%0)\n"
                                "0: ex    %1,0(1)\n"
                                : : "a" (pp->cregs+pp->start_ctl),
                                "a" ((pp->start_ctl<<4) + pp->end_ctl)
                                : "memory", "1" );
                        atomic_set(&ec->status,ec_done);
                        return;
                }
                case ec_set_ctl: {
                        ec_creg_parms *pp;
                        pp = (ec_creg_parms *) ec->parms;
                        atomic_set(&ec->status,ec_executing);
                        asm volatile (
                                "   bras  1,0f\n"
                                "   lctl 0,0,0(%0)\n"
                                "0: ex    %1,0(1)\n"
                                : : "a" (pp->cregs+pp->start_ctl),
                                "a" ((pp->start_ctl<<4) + pp->end_ctl)
                                : "memory", "1" );
                        atomic_set(&ec->status,ec_done);
                        return;
                }
                case ec_set_ctl_masked: {
                        ec_creg_mask_parms *pp;
                        u32 cregs[16];
                        int i;

                        pp = (ec_creg_mask_parms *) ec->parms;
                        atomic_set(&ec->status,ec_executing);
                        asm volatile (
                                "   bras  1,0f\n"
                                "   stctl 0,0,0(%0)\n"
                                "0: ex    %1,0(1)\n"
                                : : "a" (cregs+pp->start_ctl),
                                "a" ((pp->start_ctl<<4) + pp->end_ctl)
                                : "memory", "1" );
                        for (i = pp->start_ctl; i <= pp->end_ctl; i++)
                                cregs[i] = (cregs[i] & pp->andvals[i])
                                                     | pp->orvals[i];
                        asm volatile (
                                "   bras  1,0f\n"
                                "   lctl 0,0,0(%0)\n"
                                "0: ex    %1,0(1)\n"
                                : : "a" (cregs+pp->start_ctl),
                                "a" ((pp->start_ctl<<4) + pp->end_ctl)
                                : "memory", "1" );
                        atomic_set(&ec->status,ec_done);
                        return;
                }
                default:
                }
                ec = ec->next;
        }
}

/*
 * Send an external call sigp to another cpu and wait for its completion.
 */
sigp_ccode smp_ext_call_sync(int cpu, ec_cmd_sig cmd, void *parms)
{
        struct _lowcore *lowcore = &get_cpu_lowcore(cpu);
        sigp_ccode ccode;
        ec_ext_call ec;

        ec.cmd = cmd;
        atomic_set(&ec.status, ec_pending);
        ec.parms = parms;
        do {
                ec.next = (ec_ext_call*) atomic_read(&lowcore->ext_call_queue);
        } while (atomic_compare_and_swap((int) ec.next, (int)(&ec),
                                         &lowcore->ext_call_queue));
        /*
         * We try once to deliver the signal. There are four possible
         * return codes:
         * 0) Order code accepted - can't show up on an external call
         * 1) Status stored - fine, wait for completion.
         * 2) Busy - there is another signal pending. Thats fine too, because
         *    do_ext_call from the pending signal will execute all signals on
         *    the queue. We wait for completion.
         * 3) Not operational - something very bad has happened to the cpu.
         *    do not wait for completion.
         */
        ccode = signal_processor(cpu, sigp_external_call);

        if (ccode != sigp_not_operational)
                /* wait for completion, FIXME: possible seed of a deadlock */
                while (atomic_read(&ec.status) != ec_done);

        return ccode;
}

/*
 * Send an external call sigp to another cpu and return without waiting
 * for its completion. Currently we do not support parameters with
 * asynchronous sigps.
 */
sigp_ccode smp_ext_call_async(int cpu, ec_bit_sig sig)
{
        struct _lowcore *lowcore = &get_cpu_lowcore(cpu);
        sigp_ccode ccode;

        /*
         * Set signaling bit in lowcore of target cpu and kick it
         */
        atomic_set_mask(1<<sig, &lowcore->ext_call_fast);
        ccode = signal_processor(cpu, sigp_external_call);
        return ccode;
}

/*
 * Send an external call sigp to every other cpu in the system and
 * wait for the completion of the sigps.
 */
void smp_ext_call_sync_others(ec_cmd_sig cmd, void *parms)
{
        struct _lowcore *lowcore;
        ec_ext_call ec[NR_CPUS];
        sigp_ccode ccode;
        int i;

        for (i = 0; i < smp_num_cpus; i++) {
                if (smp_processor_id() == i)
                        continue;
                lowcore = &get_cpu_lowcore(i);
                ec[i].cmd = cmd;
                atomic_set(&ec[i].status, ec_pending);
                ec[i].parms = parms;
                do {
                        ec[i].next = (ec_ext_call *)
                                        atomic_read(&lowcore->ext_call_queue);
                } while (atomic_compare_and_swap((int) ec[i].next, (int)(ec+i),
                                                 &lowcore->ext_call_queue));
                ccode = signal_processor(i, sigp_external_call);
        }

        /* wait for completion, FIXME: possible seed of a deadlock */
        for (i = 0; i < smp_num_cpus; i++) {
                if (smp_processor_id() == i)
                        continue;
                while (atomic_read(&ec[i].status) != ec_done);
        }
}

/*
 * Send an external call sigp to every other cpu in the system and
 * return without waiting for the completion of the sigps. Currently
 * we do not support parameters with asynchronous sigps.
 */
void smp_ext_call_async_others(ec_bit_sig sig)
{
        struct _lowcore *lowcore;
        sigp_ccode ccode;
        int i;

        for (i = 0; i < smp_num_cpus; i++) {
                if (smp_processor_id() == i)
                        continue;
                lowcore = &get_cpu_lowcore(i);
                /*
                 * Set signaling bit in lowcore of target cpu and kick it
                 */
                atomic_set_mask(1<<sig, &lowcore->ext_call_fast);
                ccode = signal_processor(i, sigp_external_call);
        }
}

/*
 * cycles through all the cpus,
 * returns early if info is not NULL & the processor has something
 * of intrest to report in the info structure.
 * it returns the next cpu to check if it returns early.
 * i.e. it should be used as follows if you wish to receive info.
 * next_cpu=0;
 * do
 * {
 *    info->cpu=next_cpu;
 *    next_cpu=smp_signal_others(order_code,parameter,1,info);
 *    ... check info here
 * } while(next_cpu<=smp_num_cpus)
 *
 *  if you are lazy just use it like
 * smp_signal_others(order_code,parameter,0,1,NULL);
 */
int smp_signal_others(sigp_order_code order_code, u32 parameter,
                      int spin, sigp_info *info)
{
        sigp_ccode   ccode;
        u32          dummy;
        u16          i;

        if (info)
                info->intresting = 0;
        for (i = (info ? info->cpu : 0); i < smp_num_cpus; i++) {
                if (smp_processor_id() != i) {
                        do {
                                ccode = signal_processor_ps(
                                        (info ? &info->status : &dummy),
                                        parameter, i, order_code);
                        } while(spin && ccode == sigp_busy);
                        if (info && ccode != sigp_order_code_accepted) {
                                info->intresting = 1;
                                info->cpu = i;
                                info->ccode = ccode;
                                i++;
                                break;
                        }
                }
        }
        return i;
}

/*
 * this function sends a 'stop' sigp to all other CPUs in the system.
 * it goes straight through.
 */

void smp_send_stop(void)
{
        smp_signal_others(sigp_stop, 0, 1, NULL);
}

/*
 * this function sends a 'reschedule' IPI to another CPU.
 * it goes straight through and wastes no time serializing
 * anything. Worst case is that we lose a reschedule ...
 */

void smp_send_reschedule(int cpu)
{
        smp_ext_call_async(cpu, ec_schedule);
}

/*
 * Set a bit in a control register of all cpus
 */
void smp_ctl_set_bit(int cr, int bit) {
        ec_creg_mask_parms parms;

        if (atomic_read(&smp_commenced) != 0) {
                parms.start_ctl = cr;
                parms.end_ctl = cr;
                parms.orvals[cr] = 1 << bit;
                parms.andvals[cr] = 0xFFFFFFFF;
                smp_ext_call_sync_others(ec_set_ctl_masked,&parms);
        }
        __ctl_set_bit(cr, bit);
}

/*
 * Clear a bit in a control register of all cpus
 */
void smp_ctl_clear_bit(int cr, int bit) {
        ec_creg_mask_parms parms;

        if (atomic_read(&smp_commenced) != 0) {
                parms.start_ctl = cr;
                parms.end_ctl = cr;
                parms.orvals[cr] = 0x00000000;
                parms.andvals[cr] = ~(1 << bit);
                smp_ext_call_sync_others(ec_set_ctl_masked,&parms);
        }
        __ctl_clear_bit(cr, bit);
}


/*
 * Lets check how many CPUs we have.
 */

void smp_count_cpus(void)
{
        int curr_cpu;

        __cpu_logical_map[0] = boot_cpu_addr;
        current->processor = 0;
        smp_num_cpus = 1;
        for (curr_cpu = 0;
             curr_cpu <= 65535 && smp_num_cpus < max_cpus; curr_cpu++) {
                if ((__u16) curr_cpu == boot_cpu_addr)
                        continue;
                __cpu_logical_map[smp_num_cpus] = (__u16) curr_cpu;
                if (signal_processor(smp_num_cpus, sigp_sense) ==
                    sigp_not_operational)
                        continue;
                smp_num_cpus++;
        }
        printk("Detected %d CPU's\n",(int) smp_num_cpus);
        printk("Boot cpu address %2X\n", boot_cpu_addr);
}


/*
 *      Activate a secondary processor.
 */
extern void init_100hz_timer(void);

int __init start_secondary(void *cpuvoid)
{
        /* Setup the cpu */
        cpu_init();
        /* Print info about this processor */
        print_cpu_info(&safe_get_cpu_lowcore(smp_processor_id()).cpu_data);
        /* Wait for completion of smp startup */
        while (!atomic_read(&smp_commenced))
                /* nothing */ ;
        /* init per CPU 100 hz timer */
        init_100hz_timer();
        /* cpu_idle will call schedule for us */
        return cpu_idle(NULL);
}

/*
 * The restart interrupt handler jumps to start_secondary directly
 * without the detour over initialize_secondary. We defined it here
 * so that the linker doesn't complain.
 */
void __init initialize_secondary(void)
{
}

static int __init fork_by_hand(void)
{
       struct pt_regs regs;
       /* don't care about the psw and regs settings since we'll never
          reschedule the forked task. */
       memset(&regs,sizeof(pt_regs),0);
       return do_fork(CLONE_VM|CLONE_PID, 0, &regs, 0);
}

static void __init do_boot_cpu(int cpu)
{
        struct task_struct *idle;
        struct _lowcore    *cpu_lowcore;

        /* We can't use kernel_thread since we must _avoid_ to reschedule
           the child. */
        if (fork_by_hand() < 0)
                panic("failed fork for CPU %d", cpu);

        /*
         * We remove it from the pidhash and the runqueue
         * once we got the process:
         */
        idle = init_task.prev_task;
        if (!idle)
                panic("No idle process for CPU %d",cpu);
        idle->processor = cpu;
        idle->has_cpu = 1; /* we schedule the first task manually */

        del_from_runqueue(idle);
        unhash_process(idle);
        init_tasks[cpu] = idle;

        cpu_lowcore=&get_cpu_lowcore(cpu);
        cpu_lowcore->kernel_stack=idle->thread.ksp;
        __asm__ __volatile__("stctl 0,15,%0\n\t"
                             "stam  0,15,%1"
                             : "=m" (cpu_lowcore->cregs_save_area[0]),
                               "=m" (cpu_lowcore->access_regs_save_area[0])
                             : : "memory");

        eieio();
        signal_processor(cpu,sigp_restart);
}

/*
 *      Architecture specific routine called by the kernel just before init is
 *      fired off. This allows the BP to have everything in order [we hope].
 *      At the end of this all the APs will hit the system scheduling and off
 *      we go. Each AP will load the system gdt's and jump through the kernel
 *      init into idle(). At this point the scheduler will one day take over
 *      and give them jobs to do. smp_callin is a standard routine
 *      we use to track CPUs as they power up.
 */

void __init smp_commence(void)
{
        /*
         *      Lets the callins below out of their loop.
         */
        atomic_set(&smp_commenced,1);
}

/*
 *	Cycle through the processors sending APIC IPIs to boot each.
 */

void __init smp_boot_cpus(void)
{
        struct _lowcore *curr_lowcore;
        sigp_ccode   ccode;
        int i;
        
        smp_count_cpus();
        memset(lowcore_ptr,0,sizeof(lowcore_ptr));  
        
        /*
         *      Initialize the logical to physical CPU number mapping
         *      and the per-CPU profiling counter/multiplier
         */
        
        for (i = 0; i < NR_CPUS; i++) {
                prof_counter[i] = 1;
                prof_old_multiplier[i] = 1;
                prof_multiplier[i] = 1;
        }

        print_cpu_info(&safe_get_cpu_lowcore(0).cpu_data);

        for(i = 0; i < smp_num_cpus; i++)
        {
                curr_lowcore = (struct _lowcore *)
                                    __get_free_page(GFP_KERNEL|GFP_DMA);
                if (curr_lowcore == NULL) {
                        printk("smp_boot_cpus failed to allocate prefix memory\n");
                        break;
                }
                lowcore_ptr[i] = curr_lowcore;
                memcpy(curr_lowcore, &S390_lowcore, sizeof(struct _lowcore));
                /*
                 * Most of the parameters are set up when the cpu is
                 * started up.
                 */
                if (smp_processor_id() == i)
                        set_prefix((u32) curr_lowcore);
                else {
                        ccode = signal_processor_p((u32)(curr_lowcore),
                                                   i, sigp_set_prefix);
                        if(ccode) {
                                /* if this gets troublesome I'll have to do
                                 * something about it. */
                                printk("ccode %d for cpu %d  returned when "
                                       "setting prefix in smp_boot_cpus not good.\n",
                                       (int) ccode, (int) i);
                        }
                        else
                                do_boot_cpu(i);
                }
        }
}

/*
 * the frequency of the profiling timer can be changed
 * by writing a multiplier value into /proc/profile.
 *
 * usually you want to run this on all CPUs ;)
 */
int setup_profiling_timer(unsigned int multiplier)
{
        return 0;
}

/*
 * Local timer interrupt handler. It does both profiling and
 * process statistics/rescheduling.
 *
 * We do profiling in every local tick, statistics/rescheduling
 * happen only every 'profiling multiplier' ticks. The default
 * multiplier is 1 and it can be changed by writing the new multiplier
 * value into /proc/profile.
 */

void smp_local_timer_interrupt(struct pt_regs * regs)
{
	int user = (user_mode(regs) != 0);
        int cpu = smp_processor_id();

        /*
         * The profiling function is SMP safe. (nothing can mess
         * around with "current", and the profiling counters are
         * updated with atomic operations). This is especially
         * useful with a profiling multiplier != 1
         */
        if (!user_mode(regs))
                s390_do_profile(regs->psw.addr);

        if (!--prof_counter[cpu]) {
                int system = 1-user;
                struct task_struct * p = current;

                /*
                 * The multiplier may have changed since the last time we got
                 * to this point as a result of the user writing to
                 * /proc/profile.  In this case we need to adjust the APIC
                 * timer accordingly.
                 *
                 * Interrupts are already masked off at this point.
                 */
                prof_counter[cpu] = prof_multiplier[cpu];
                if (prof_counter[cpu] != prof_old_multiplier[cpu]) {
			/* FIXME setup_APIC_timer(calibration_result/prof_counter[cpu]
			   ); */
                  prof_old_multiplier[cpu] = prof_counter[cpu];
                }

                /*
                 * After doing the above, we need to make like
                 * a normal interrupt - otherwise timer interrupts
                 * ignore the global interrupt lock, which is the
                 * WrongThing (tm) to do.
                 */

                irq_enter(cpu, 0);
                update_one_process(p, 1, user, system, cpu);
                if (p->pid) {
                        p->counter -= 1;
                        if (p->counter <= 0) {
                                p->counter = 0;
                                p->need_resched = 1;
                        }
                        if (p->nice > 0) {
                                kstat.cpu_nice += user;
                                kstat.per_cpu_nice[cpu] += user;
                        } else {
                                kstat.cpu_user += user;
                                kstat.per_cpu_user[cpu] += user;
                        }
                        kstat.cpu_system += system;
                        kstat.per_cpu_system[cpu] += system;

                }
                irq_exit(cpu, 0);
        }
}