1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/*
* linux/arch/sparc/mm/init.c
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/vac-ops.h>
#include <asm/page.h>
#include <asm/pgtable.h>
extern void scsi_mem_init(unsigned long);
extern void sound_mem_init(void);
extern void die_if_kernel(char *,struct pt_regs *,long);
extern void show_net_buffers(void);
extern int map_the_prom(int);
struct sparc_phys_banks sp_banks[14];
unsigned long *sun4c_mmu_table;
extern int invalid_segment, num_segmaps, num_contexts;
/*
* BAD_PAGE is the page that is used for page faults when linux
* is out-of-memory. Older versions of linux just did a
* do_exit(), but using this instead means there is less risk
* for a process dying in kernel mode, possibly leaving a inode
* unused etc..
*
* BAD_PAGETABLE is the accompanying page-table: it is initialized
* to point to BAD_PAGE entries.
*
* ZERO_PAGE is a special page that is used for zero-initialized
* data and COW.
*/
pte_t *__bad_pagetable(void)
{
memset((void *) EMPTY_PGT, 0, PAGE_SIZE);
return (pte_t *) EMPTY_PGT;
}
pte_t __bad_page(void)
{
memset((void *) EMPTY_PGE, 0, PAGE_SIZE);
return pte_mkdirty(mk_pte((unsigned long) EMPTY_PGE, PAGE_SHARED));
}
unsigned long __zero_page(void)
{
memset((void *) ZERO_PGE, 0, PAGE_SIZE);
return ZERO_PGE;
}
void show_mem(void)
{
int i,free = 0,total = 0,reserved = 0;
int shared = 0;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
i = high_memory >> PAGE_SHIFT;
while (i-- > 0) {
total++;
if (mem_map[i] & MAP_PAGE_RESERVED)
reserved++;
else if (!mem_map[i])
free++;
else
shared += mem_map[i]-1;
}
printk("%d pages of RAM\n",total);
printk("%d free pages\n",free);
printk("%d reserved pages\n",reserved);
printk("%d pages shared\n",shared);
show_buffers();
#ifdef CONFIG_NET
show_net_buffers();
#endif
}
extern unsigned long free_area_init(unsigned long, unsigned long);
/*
* paging_init() sets up the page tables: in the alpha version this actually
* unmaps the bootup page table (as we're now in KSEG, so we don't need it).
*
* The bootup sequence put the virtual page table into high memory: that
* means that we can change the L1 page table by just using VL1p below.
*/
unsigned long paging_init(unsigned long start_mem, unsigned long end_mem)
{
unsigned long i, a, b, mask=0;
unsigned long curseg, curpte, num_inval;
unsigned long address;
pte_t *pg_table;
register int num_segs, num_ctx;
register char * c;
num_segs = num_segmaps;
num_ctx = num_contexts;
num_segs -= 1;
invalid_segment = num_segs;
start_mem = free_area_init(start_mem, end_mem);
/* On the sparc we first need to allocate the segmaps for the
* PROM's virtual space, and make those segmaps unusable. We
* map the PROM in ALL contexts therefore the break key and the
* sync command work no matter what state you took the machine
* out of
*/
printk("mapping the prom...\n");
num_segs = map_the_prom(num_segs);
start_mem = PAGE_ALIGN(start_mem);
/* Set up static page tables in kernel space, this will be used
* so that the low-level page fault handler can fill in missing
* TLB entries since all mmu entries cannot be loaded at once
* on the sun4c.
*/
#if 0
/* ugly debugging code */
for(i=0; i<40960; i+=PAGE_SIZE)
printk("address=0x%x vseg=%d pte=0x%x\n", (unsigned int) i,
(int) get_segmap(i), (unsigned int) get_pte(i));
#endif
printk("Setting up kernel static mmu table... bounce bounce\n");
address = 0; /* ((unsigned long) &end) + 524288; */
sun4c_mmu_table = (unsigned long *) start_mem;
pg_table = (pte_t *) start_mem;
curseg = curpte = num_inval = 0;
while(address < end_mem) {
if(curpte == 0)
put_segmap((address&PGDIR_MASK), curseg);
for(i=0; sp_banks[i].num_bytes != 0; i++)
if((address >= sp_banks[i].base_addr) &&
(address <= (sp_banks[i].base_addr + sp_banks[i].num_bytes)))
goto good_address;
/* No physical memory here, so set the virtual segment to
* the invalid one, and put an invalid pte in the static
* kernel table.
*/
*pg_table = mk_pte((address >> PAGE_SHIFT), PAGE_INVALID);
pg_table++; curpte++; num_inval++;
if(curpte > 63) {
if(curpte == num_inval) {
put_segmap((address&PGDIR_MASK), invalid_segment);
} else {
put_segmap((address&PGDIR_MASK), curseg);
curseg++;
}
curpte = num_inval = 0;
}
address += PAGE_SIZE;
continue;
good_address:
/* create pte entry */
if(address < (((unsigned long) &end) + 524288)) {
pte_val(*pg_table) = get_pte(address);
} else {
*pg_table = mk_pte((address >> PAGE_SHIFT), PAGE_KERNEL);
put_pte(address, pte_val(*pg_table));
}
pg_table++; curpte++;
if(curpte > 63) {
put_segmap((address&PGDIR_MASK), curseg);
curpte = num_inval = 0;
curseg++;
}
address += PAGE_SIZE;
}
start_mem = (unsigned long) pg_table;
/* ok, allocate the kernel pages, map them in all contexts
* (with help from the prom), and lock them. Isn't the sparc
* fun kiddies? TODO
*/
#if 0
/* ugly debugging code */
for(i=0x1a3000; i<(0x1a3000+40960); i+=PAGE_SIZE)
printk("address=0x%x vseg=%d pte=0x%x\n", (unsigned int) i,
(int) get_segmap(i), (unsigned int) get_pte(i));
halt();
#endif
b=PGDIR_ALIGN(start_mem)>>18;
c= (char *)0x0;
printk("mapping kernel in all contexts...\n");
for(a=0; a<b; a++)
{
for(i=0; i<num_contexts; i++)
{
/* map the kernel virt_addrs */
(*(romvec->pv_setctxt))(i, (char *) c, a);
}
c += 0x40000;
}
/* Ok, since now mapped in all contexts, we can free up
* context zero to be used amongst user processes.
*/
/* free context 0 here TODO */
/* invalidate all user pages and initialize the pte struct
* for userland. TODO
*/
/* Make the kernel text unwritable and cacheable, the prom
* loaded our text as writable, only sneaky sunos kernels need
* self-modifying code.
*/
a= (unsigned long) &etext;
mask=~(PTE_NC|PTE_W); /* make cacheable + not writable */
/* must do for every segment since kernel uses all contexts
* and unlike some sun kernels I know of, we can't hard wire
* context 0 just for the kernel, that is unnecessary.
*/
for(i=0; i<8; i++)
{
b=PAGE_ALIGN((unsigned long) &trapbase);
switch_to_context(i);
for(;b<a; b+=4096)
{
put_pte(b, (get_pte(b) & mask));
}
}
invalidate(); /* flush the virtual address cache */
printk("\nCurrently in context - ");
for(i=0; i<num_contexts; i++)
{
switch_to_context(i);
printk("%d ", (int) i);
}
printk("\n");
switch_to_context(0);
invalidate();
return start_mem;
}
void mem_init(unsigned long start_mem, unsigned long end_mem)
{
unsigned long start_low_mem = PAGE_SIZE;
int codepages = 0;
int reservedpages = 0;
int datapages = 0;
int i = 0;
unsigned long tmp, limit, tmp2, addr;
extern char etext;
end_mem &= PAGE_MASK;
high_memory = end_mem;
start_low_mem = PAGE_ALIGN(start_low_mem);
start_mem = PAGE_ALIGN(start_mem);
for(i = 0; sp_banks[i].num_bytes != 0; i++) {
tmp = sp_banks[i].base_addr;
limit = (sp_banks[i].base_addr + sp_banks[i].num_bytes);
if(tmp<start_mem) {
if(limit>start_mem)
tmp = start_mem;
else continue;
}
while(tmp<limit) {
mem_map[MAP_NR(tmp)] = 0;
tmp += PAGE_SIZE;
}
if(sp_banks[i+1].num_bytes != 0)
while(tmp < sp_banks[i+1].base_addr) {
mem_map[MAP_NR(tmp)] = MAP_PAGE_RESERVED;
tmp += PAGE_SIZE;
}
}
#ifdef CONFIG_SCSI
scsi_mem_init(high_memory);
#endif
for (addr = 0; addr < high_memory; addr += PAGE_SIZE) {
if(mem_map[MAP_NR(addr)]) {
if (addr < (unsigned long) &etext)
codepages++;
else if(addr < start_mem)
datapages++;
else
reservedpages++;
continue;
}
mem_map[MAP_NR(addr)] = 1;
free_page(addr);
}
tmp2 = nr_free_pages << PAGE_SHIFT;
printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data)\n",
tmp2 >> 10,
high_memory >> 10,
codepages << (PAGE_SHIFT-10),
reservedpages << (PAGE_SHIFT-10),
datapages << (PAGE_SHIFT-10));
invalidate();
return;
}
void si_meminfo(struct sysinfo *val)
{
int i;
i = high_memory >> PAGE_SHIFT;
val->totalram = 0;
val->sharedram = 0;
val->freeram = nr_free_pages << PAGE_SHIFT;
val->bufferram = buffermem;
while (i-- > 0) {
if (mem_map[i] & MAP_PAGE_RESERVED)
continue;
val->totalram++;
if (!mem_map[i])
continue;
val->sharedram += mem_map[i]-1;
}
val->totalram <<= PAGE_SHIFT;
val->sharedram <<= PAGE_SHIFT;
return;
}
|