1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
/* $Id: dtlb_base.S,v 1.4 1998/06/15 16:59:30 jj Exp $
* dtlb_base.S: Front end to DTLB miss replacement strategy.
* This is included directly into the trap table.
*
* Copyright (C) 1996,1998 David S. Miller (davem@dm.cobaltmicro.com)
* Copyright (C) 1997,1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#define TAG_CONTEXT_BITS 0x3ff
#define VPTE_SHIFT (PAGE_SHIFT - 3)
#define KERN_HIGHBITS ((_PAGE_VALID | _PAGE_SZ4MB) ^ 0xfffff80000000000)
#define KERN_LOWBITS (_PAGE_CP | _PAGE_CV | _PAGE_P | _PAGE_W)
#define KERN_LOWBITS_IO (_PAGE_E | _PAGE_P | _PAGE_W)
#define KERN_IOBITS (KERN_LOWBITS ^ KERN_LOWBITS_IO)
/* %g1 TLB_SFSR (%g1 + %g1 == TLB_TAG_ACCESS)
* %g2 (KERN_HIGHBITS | KERN_LOWBITS)
* %g3 VPTE base (0xfffffffe00000000) Spitfire/Blackbird (44-bit VA space)
* (0xffe0000000000000) Cheetah (64-bit VA space)
* %g7 __pa(current->mm->pgd)
*
* The VPTE base value is completely magic, but note that
* nothing else in the kernel other than these TLB miss
* handlers know anything about the VPTE mechanism or
* how it works. Consider the 44-bit VADDR Ultra-I/II
* case as an example:
*
* VA[0 : (1<<43)] produce VPTE index [%g3 : 0]
* VA[0 : -(1<<43)] produce VPTE index [%g3-(1<<(43-PAGE_SHIFT+3)) : %g3]
*
* For Cheetah's 64-bit VADDR space this is:
*
* VA[0 : (1<<63)] produce VPTE index [%g3 : 0]
* VA[0 : -(1<<63)] produce VPTE index [%g3-(1<<(63-PAGE_SHIFT+3)) : %g3]
*
* If you're paying attention you'll notice that this means half of
* the VPTE table is above %g3 and half is below, low VA addresses
* map progressively upwards from %g3, and high VA addresses map
* progressively downwards from %g3. This trick was needed to make
* the same 8 instruction handler work both for Spitfire/Blackbird's
* peculiar VA space hole configuration and the full 64-bit VA space
* one of Cheetah at the same time.
*/
/* Ways we can get here:
*
* 1) Nucleus loads and stores to/from PA-->VA direct mappings.
* 2) Nucleus loads and stores to/from vmalloc() areas.
* 3) User loads and stores.
* 4) User space accesses by nucleus at tl0
*/
/* DTLB ** ICACHE line 1: Quick user TLB misses */
ldxa [%g1 + %g1] ASI_DMMU, %g4 ! Get TAG_ACCESS
andcc %g4, TAG_CONTEXT_BITS, %g0 ! From Nucleus?
be,pn %xcc, 3f ! Yep, special processing
srax %g4, VPTE_SHIFT, %g6 ! Create VPTE offset
ldxa [%g3 + %g6] ASI_S, %g5 ! Load VPTE
1: brlz,pt %g5, 2f ! Valid, load into TLB
and %g5, (_PAGE_PRESENT|_PAGE_READ), %g4 ! Mask readable bits
ba,a,pt %xcc, 4f ! Invalid, branch out
/* DTLB ** ICACHE line 2: Quick kernel TLB misses */
3: brgez,a,pn %g4, 1b ! Kernel virtual map?
ldxa [%g3 + %g6] ASI_N, %g5 ! Yep, load k-vpte
srlx %g4, 40, %g5 ! Else compute phys-kpte
andcc %g5, 1, %g0 ! I/O area?
be,pt %xcc, 2f ! Nope, go and load TLB
xor %g2, %g4, %g5 ! Finish bit twiddles
ba,pt %xcc, 2f ! Yes, I/O space, back back
xor %g5, (KERN_IOBITS), %g5 ! After set E, clear CP/CV
/* DTLB ** ICACHE line 3: winfixups+real_faults */
4: cmp %g4, (_PAGE_PRESENT|_PAGE_READ) ! Readable page?
be,pn %xcc, 5f ! Yep, refbit update
sllx %g1, 60, %g4 ! Get valid bit
rdpr %pstate, %g5 ! Move into alternate globals
wrpr %g5, PSTATE_AG|PSTATE_MG, %pstate
rdpr %tl, %g4 ! See where we came from.
cmp %g4, 1 ! Is etrap/rtrap window fault?
mov TLB_TAG_ACCESS, %g4 ! Prepare for fault processing
/* DTLB ** ICACHE line 4: padding */
be,pt %xcc, sparc64_realfault_common ! Jump to normal fault handling
ldxa [%g4] ASI_DMMU, %g5 ! And load faulting VA page
ba,a,pt %xcc, winfix_trampoline ! Call window fixup code
5: or %g5, _PAGE_ACCESSED, %g5 ! Indicate reference
or %g5, %g4, %g5 ! Set valid
stxa %g5, [%g3 + %g6] ASI_S ! Update PTE table (cant trap)
2: stxa %g5, [%g0] ASI_DTLB_DATA_IN ! Reload TLB
retry ! Trap return
#undef TAG_CONTEXT_BITS
#undef VPTE_SHIFT
#undef KERN_HIGHBITS
#undef KERN_LOWBITS
#undef KERN_LOWBITS_IO
#undef KERN_IOBITS
|