1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
|
/* Linux driver for Disk-On-Chip Millennium */
/* (c) 1999 Machine Vision Holdings, Inc. */
/* Author: David Woodhouse <dwmw2@mvhi.com> */
/* $Id: doc2001.c,v 1.7 2000/07/13 10:41:39 dwmw2 Exp $ */
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/malloc.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/doc2000.h>
static struct {
char * name;
int manufacture_id;
int model_id;
int chipshift;
} nand_flash_ids[] = {
{"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21},
{"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22},
{"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24},
{"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25},
{"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22},
{"Toshiba TC58V64DC", NAND_MFR_TOSHIBA, 0xe6, 23},
{"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21},
{"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21},
{"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24},
{"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25},
{"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22},
{"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23},
{"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21},
{NULL,}
};
static int doc_read (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);
static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
static int doc_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf, u_char *eecbuf);
static int doc_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf, u_char *eccbuf);
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t *retlen, u_char *buf);
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t *retlen, const u_char *buf);
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
static struct mtd_info *docmillist = NULL;
static void DoC_Delay(unsigned long docptr, unsigned short cycles)
{
volatile char dummy;
int i;
for (i = 0; i < cycles; i++)
dummy = ReadDOC(docptr, NOP);
}
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(unsigned long docptr)
{
unsigned short c = 0xffff;
/* Out-of-line routine to wait for chip response */
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c)
;
return (c == 0);
}
static __inline__ int DoC_WaitReady(unsigned long docptr)
{
/* This is inline, to optimise the common case, where it's ready instantly */
int ret = 0;
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
see Software Requirement 11.4 item 2. */
DoC_Delay(docptr, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(docptr);
/* issue 2 read from NOP register after reading from CDSNControl register
see Software Requirement 11.4 item 2. */
DoC_Delay(docptr, 2);
return ret;
}
/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to bypass
the internal pipeline. Each of 4 delay cycles (read from the NOP register) is required after
writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static __inline__ void DoC_Command(unsigned long docptr, unsigned char command,
unsigned char xtraflags)
{
/* Assert the CLE (Command Latch Enable) line to the flash chip */
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
/* Send the command */
WriteDOC(command, docptr, CDSNSlowIO);
WriteDOC(command, docptr, Mil_CDSN_IO);
/* Lower the CLE line */
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
}
/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to bypass
the internal pipeline. Each of 4 delay cycles (read from the NOP register) is required after
writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static __inline__ void DoC_Address (unsigned long docptr, int numbytes, unsigned long ofs,
unsigned char xtraflags1, unsigned char xtraflags2)
{
/* Assert the ALE (Address Latch Enable line to the flash chip */
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
/* Send the address */
switch (numbytes)
{
case 1:
/* Send single byte, bits 0-7. */
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
break;
case 2:
/* Send bits 9-16 followed by 17-23 */
WriteDOC((ofs >> 9) & 0xff, docptr, CDSNSlowIO);
WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
WriteDOC((ofs >> 17) & 0xff, docptr, CDSNSlowIO);
WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
break;
case 3:
/* Send 0-7, 9-16, then 17-23 */
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
WriteDOC((ofs >> 9) & 0xff, docptr, CDSNSlowIO);
WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
WriteDOC((ofs >> 17) & 0xff, docptr, CDSNSlowIO);
WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
break;
default:
return;
}
/* Lower the ALE line */
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
}
/* DoC_SelectChip: Select a given flash chip within the current floor */
static int DoC_SelectChip(unsigned long docptr, int chip)
{
/* Select the individual flash chip requested */
WriteDOC(chip, docptr, CDSNDeviceSelect);
DoC_Delay(docptr, 4);
/* Wait for it to be ready */
return DoC_WaitReady(docptr);
}
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
static int DoC_SelectFloor(unsigned long docptr, int floor)
{
/* Select the floor (bank) of chips required */
WriteDOC(floor, docptr, FloorSelect);
/* Wait for the chip to be ready */
return DoC_WaitReady(docptr);
}
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
{
int mfr, id, i;
volatile char dummy;
/* Page in the required floor/chip
FIXME: is this supported by Millennium ?? */
DoC_SelectFloor(doc->virtadr, floor);
DoC_SelectChip(doc->virtadr, chip);
/* Reset the chip, see Software Requirement 11.4 item 1. */
DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP);
DoC_WaitReady(doc->virtadr);
/* Read the NAND chip ID: 1. Send ReadID command */
DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP);
/* Read the NAND chip ID: 2. Send address byte zero */
DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00);
/* Read the manufacturer and device id codes of the flash device through
CDSN Slow IO register see Software Requirement 11.4 item 5.*/
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
DoC_Delay(doc->virtadr, 2);
mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO);
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
DoC_Delay(doc->virtadr, 2);
id = ReadDOC(doc->virtadr, Mil_CDSN_IO);
/* No response - return failure */
if (mfr == 0xff || mfr == 0)
return 0;
/* FIXME: to deal with mulit-flash on multi-Millennium case more carefully */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if (mfr == nand_flash_ids[i].manufacture_id &&
id == nand_flash_ids[i].model_id) {
printk(KERN_INFO "Flash chip found: Manufacture ID: %2.2X, "
"Chip ID: %2.2X (%s)\n",
mfr, id, nand_flash_ids[i].name);
doc->mfr = mfr;
doc->id = id;
doc->chipshift = nand_flash_ids[i].chipshift;
break;
}
}
if (nand_flash_ids[i].name == NULL)
return 0;
else
return 1;
}
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
static void DoC_ScanChips(struct DiskOnChip *this)
{
int floor, chip;
int numchips[MAX_FLOORS_MIL];
int ret;
this->numchips = 0;
this->mfr = 0;
this->id = 0;
/* For each floor, find the number of valid chips it contains */
for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) {
numchips[floor] = 0;
for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) {
ret = DoC_IdentChip(this, floor, chip);
if (ret) {
numchips[floor]++;
this->numchips++;
}
}
}
/* If there are none at all that we recognise, bail */
if (!this->numchips) {
printk("No flash chips recognised.\n");
return;
}
/* Allocate an array to hold the information for each chip */
this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
if (!this->chips){
printk("No memory for allocating chip info structures\n");
return;
}
/* Fill out the chip array with {floor, chipno} for each
* detected chip in the device. */
for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) {
for (chip = 0 ; chip < numchips[floor] ; chip++) {
this->chips[ret].floor = floor;
this->chips[ret].chip = chip;
this->chips[ret].curadr = 0;
this->chips[ret].curmode = 0x50;
ret++;
}
}
/* Calculate and print the total size of the device */
this->totlen = this->numchips * (1 << this->chipshift);
printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld Mbytes\n",
this->numchips ,this->totlen >> 20);
}
static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
{
int tmp1, tmp2, retval;
if (doc1->physadr == doc2->physadr)
return 1;
/* Use the alias resolution register which was set aside for this
* purpose. If it's value is the same on both chips, they might
* be the same chip, and we write to one and check for a change in
* the other. It's unclear if this register is usuable in the
* DoC 2000 (it's in the Millenium docs), but it seems to work. */
tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
if (tmp1 != tmp2)
return 0;
WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution);
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
if (tmp2 == (tmp1+1) % 0xff)
retval = 1;
else
retval = 0;
/* Restore register contents. May not be necessary, but do it just to
* be safe. */
WriteDOC(tmp1, doc1->virtadr, AliasResolution);
return retval;
}
static const char im_name[] = "DoCMil_init";
/* This routine is made available to other mtd code via
* inter_module_register. It must only be accessed through
* inter_module_get which will bump the use count of this module. The
* addresses passed back in mtd are valid as long as the use count of
* this module is non-zero, i.e. between inter_module_get and
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
*/
void DoCMil_init(struct mtd_info *mtd)
{
struct DiskOnChip *this = (struct DiskOnChip *)mtd->priv;
struct DiskOnChip *old = NULL;
/* We must avoid being called twice for the same device. */
if (docmillist)
old = (struct DiskOnChip *)docmillist->priv;
while (old) {
if (DoCMil_is_alias(this, old)) {
printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at "
"0x%lX - already configured\n", this->physadr);
iounmap((void *)this->virtadr);
kfree(mtd);
return;
}
if (old->nextdoc)
old = (struct DiskOnChip *)old->nextdoc->priv;
else
old = NULL;
}
mtd->name = "DiskOnChip Millennium";
printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n",
this->physadr);
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->size = 0;
mtd->erasesize = 0x2000;
mtd->oobblock = 512;
mtd->oobsize = 16;
mtd->module = THIS_MODULE;
mtd->erase = doc_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = doc_read;
mtd->write = doc_write;
mtd->read_ecc = doc_read_ecc;
mtd->write_ecc = doc_write_ecc;
mtd->read_oob = doc_read_oob;
mtd->write_oob = doc_write_oob;
mtd->sync = NULL;
this->totlen = 0;
this->numchips = 0;
this->curfloor = -1;
this->curchip = -1;
/* Ident all the chips present. */
DoC_ScanChips(this);
if (!this->totlen) {
kfree(mtd);
iounmap((void *)this->virtadr);
} else {
this->nextdoc = docmillist;
docmillist = mtd;
mtd->size = this->totlen;
add_mtd_device(mtd);
return;
}
}
static int doc_read (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
/* Just a special case of doc_read_ecc */
return doc_read_ecc(mtd, from, len, retlen, buf, NULL);
}
static int doc_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf, u_char *eccbuf)
{
int i;
volatile char dummy;
struct DiskOnChip *this = (struct DiskOnChip *)mtd->priv;
unsigned long docptr = this->virtadr;
struct Nand *mychip = &this->chips[from >> (this->chipshift)];
/* Don't allow read past end of device */
if (from >= this->totlen)
return -EINVAL;
/* Don't allow a single read to cross a 512-byte block boundary */
if (from + len > ((from | 0x1ff) + 1))
len = ((from | 0x1ff) + 1) - from;
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
if (eccbuf) {
/* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_EN, docptr, ECCConf);
} else {
/* disable the ECC engine, FIXME: is this correct ?? */
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
}
/* issue the Read0 or Read1 command depend on which half of the page
we are accessing. Polling the Flash Ready bit after issue 3 bytes
address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP);
DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00);
DoC_WaitReady(docptr);
/* Read the data via the internal pipeline through CDSN IO register,
see Pipelined Read Operations 11.3 */
dummy = ReadDOC(docptr, ReadPipeInit);
for (i = 0; i < len-1; i++) {
buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
}
buf[i] = ReadDOC(docptr, LastDataRead);
/* Let the caller know we completed it */
*retlen = len;
if (eccbuf) {
/* FIXME: are we reading the ECC from the ECC logic of DOC or
the spare data space on the flash chip i.e. How do we
control the Spare Area Enable bit of the flash ?? */
/* Read the ECC data through the DiskOnChip ECC logic
see Reed-Solomon EDC/ECC 11.1 */
dummy = ReadDOC(docptr, ReadPipeInit);
for (i = 0; i < 5; i++) {
eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO);
}
eccbuf[i] = ReadDOC(docptr, LastDataRead);
/* Flush the pipeline */
dummy = ReadDOC(docptr, ECCConf);
dummy = ReadDOC(docptr, ECCConf);
/* Check the ECC Status */
if (ReadDOC(docptr, ECCConf) & 0x80) {
/* There was an ECC error */
printk("DiskOnChip ECC Error: Read at %lx\n", (long)from);
/* FIXME: Implement ECC error correction, don't just whinge */
/* We return error, but have actually done the read. Not that
this can be told to user-space, via sys_read(), but at least
MTD-aware stuff can know about it by checking *retlen */
return -EIO;
}
#ifdef PSYCHO_DEBUG
else
printk("ECC OK at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
(long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
eccbuf[4], eccbuf[5]);
#endif
/* Reset the ECC engine */
WriteDOC(DOC_ECC_RESV, docptr , ECCConf);
}
return 0;
}
static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
static char as[6];
return doc_write_ecc(mtd, to, len, retlen, buf, as);
}
static int doc_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf, u_char *eccbuf)
{
int i;
volatile char dummy;
struct DiskOnChip *this = (struct DiskOnChip *)mtd->priv;
unsigned long docptr = this->virtadr;
struct Nand *mychip = &this->chips[to >> (this->chipshift)];
/* Don't allow write past end of device */
if (to >= this->totlen)
return -EINVAL;
#if 0
/* Don't allow a single write to cross a 512-byte block boundary */
if (to + len > ( (to | 0x1ff) + 1))
len = ((to | 0x1ff) + 1) - to;
#else
/* Don't allow writes which aren't exactly one block */
if (to & 0x1ff || len != 0x200)
return -EINVAL;
#endif
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
}
else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* Reset the chip, see Software Requirement 11.4 item 1. */
DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP);
DoC_WaitReady(docptr);
/* Set device to main plane of flash */
DoC_Command(docptr, NAND_CMD_READ0, CDSN_CTRL_WP);
if (eccbuf) {
/* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
} else {
/* disable the ECC engine, FIXME: is this correct ?? */
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
}
/* issue the Serial Data In command to initial the Page Program process */
DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
DoC_Address(docptr, 3, to, 0x00, 0x00);
/* Write the data via the internal pipeline through CDSN IO register,
see Pipelined Write Operations 11.2 */
for (i = 0; i < len; i++) {
WriteDOC(buf[i], docptr, Mil_CDSN_IO);
}
WriteDOC(0x00, docptr, WritePipeTerm);
if (eccbuf) {
/* Write ECC data to flash, the ECC info is generated by the DiskOnChip DECC logic
see Reed-Solomon EDC/ECC 11.1 */
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
/* Read the ECC data through the DiskOnChip ECC logic */
for (i = 0; i < 6; i++) {
eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i);
}
/* Write the ECC data to flash */
for (i = 0; i < 6; i++) {
WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO);
}
WriteDOC(0x00, docptr, WritePipeTerm);
#ifdef PSYCHO_DEBUG
printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
(long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
eccbuf[4], eccbuf[5]);
#endif
/* Reset the ECC engine */
WriteDOC(DOC_ECC_RESV, docptr , ECCConf);
}
/* Commit the Page Program command and wait for ready
see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
DoC_WaitReady(docptr);
/* Read the status of the flash device through CDSN Slow IO register
see Software Requirement 11.4 item 5.*/
DoC_Command(docptr, NAND_CMD_STATUS, 0x00);
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(docptr, 2);
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
printk("Error programming flash\n");
/* Error in programming */
*retlen = 0;
return -EIO;
}
/* Let the caller know we completed it */
*retlen = len;
return 0;
}
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t *retlen, u_char *buf)
{
volatile char dummy;
int i;
struct DiskOnChip *this = (struct DiskOnChip *)mtd->priv;
unsigned long docptr = this->virtadr;
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
/* FIXME: should we restrict the access between 512 to 527 ?? */
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
}
else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* FIXME: should we disable ECC engine in this way ?? */
/* disable the ECC engine, FIXME: is this correct ?? */
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
/* issue the Read2 command to read the Spare Data Area.
Polling the Flash Ready bit after issue 3 bytes address in
Sequence Read Mode, see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00);
DoC_WaitReady(docptr);
/* Read the data out via the internal pipeline through CDSN IO register,
see Pipelined Read Operations 11.3 */
dummy = ReadDOC(docptr, ReadPipeInit);
for (i = 0; i < len-1; i++) {
buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
}
buf[i] = ReadDOC(docptr, LastDataRead);
*retlen = len;
return 0;
}
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t *retlen, const u_char *buf)
{
int i;
volatile char dummy;
struct DiskOnChip *this = (struct DiskOnChip *)mtd->priv;
unsigned long docptr = this->virtadr;
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
}
else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* FIXME: should we disable ECC engine in this way ?? */
/* disable the ECC engine, FIXME: is this correct ?? */
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
/* Reset the chip, see Software Requirement 11.4 item 1. */
DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP);
DoC_WaitReady(docptr);
/* issue the Read2 command to read the Spare Data Area. */
DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
/* issue the Serial Data In command to initial the Page Program process */
DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
DoC_Address(docptr, 3, ofs, 0x00, 0x00);
/* Write the data via the internal pipeline through CDSN IO register,
see Pipelined Write Operations 11.2 */
for (i = 0; i < len; i++)
WriteDOC(buf[i], docptr, Mil_CDSN_IO);
WriteDOC(0x00, docptr, WritePipeTerm);
/* Commit the Page Program command and wait for ready
see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
DoC_WaitReady(docptr);
/* Read the status of the flash device through CDSN Slow IO register
see Software Requirement 11.4 item 5.*/
DoC_Command(docptr, NAND_CMD_STATUS, 0x00);
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(docptr, 2);
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
printk("Error programming oob data\n");
*retlen = 0;
return -EIO;
}
*retlen = len;
return 0;
}
int doc_erase (struct mtd_info *mtd, struct erase_info *instr)
{
volatile char dummy;
struct DiskOnChip *this = (struct DiskOnChip *)mtd->priv;
unsigned long ofs = instr->addr;
unsigned long len = instr->len;
unsigned long docptr = this->virtadr;
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
if (len != mtd->erasesize)
printk(KERN_WARNING "Erase not right size (%lx != %lx)n",
len, mtd->erasesize);
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
}
else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
instr->state = MTD_ERASE_PENDING;
/* issue the Erase Setup command */
DoC_Command(docptr, NAND_CMD_ERASE1, 0x00);
DoC_Address(docptr, 2, ofs, 0x00, 0x00);
/* Commit the Erase Start command and wait for ready
see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_ERASE2, 0x00);
DoC_WaitReady(docptr);
instr->state = MTD_ERASING;
/* Read the status of the flash device through CDSN Slow IO register
see Software Requirement 11.4 item 5.*/
DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(docptr, 2);
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
printk("Error Erasing\n");
/* There was an error */
instr->state = MTD_ERASE_FAILED;
} else
instr->state = MTD_ERASE_DONE;
if (instr->callback)
instr->callback(instr);
return 0;
}
/****************************************************************************
*
* Module stuff
*
****************************************************************************/
static int __init init_doc2001(void)
{
inter_module_register(im_name, THIS_MODULE, &DoCMil_init);
return 0;
}
#if LINUX_VERSION_CODE < 0x20300
#ifdef MODULE
#define cleanup_doc2001 cleanup_module
#endif
#define __exit
#endif
static void __exit cleanup_doc2001(void)
{
struct mtd_info *mtd;
struct DiskOnChip *this;
while((mtd=docmillist)) {
this = (struct DiskOnChip *)mtd->priv;
docmillist = this->nextdoc;
del_mtd_device(mtd);
iounmap((void *)this->virtadr);
kfree(this->chips);
kfree(mtd);
}
inter_module_unregister(im_name);
}
module_init(init_doc2001);
#if LINUX_VERSION_CODE > 0x20300
module_exit(cleanup_doc2001);
#endif
|