1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
|
/*
* $Id: pci.c,v 1.91 1999/01/21 13:34:01 davem Exp $
*
* PCI Bus Services, see include/linux/pci.h for further explanation.
*
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
* David Mosberger-Tang
*
* Copyright 1997 -- 2000 Martin Mares <mj@suse.cz>
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/malloc.h>
#include <linux/ioport.h>
#include <asm/page.h>
#undef DEBUG
#ifdef DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
LIST_HEAD(pci_root_buses);
LIST_HEAD(pci_devices);
struct pci_dev *
pci_find_slot(unsigned int bus, unsigned int devfn)
{
struct pci_dev *dev;
pci_for_each_dev(dev) {
if (dev->bus->number == bus && dev->devfn == devfn)
return dev;
}
return NULL;
}
struct pci_dev *
pci_find_subsys(unsigned int vendor, unsigned int device,
unsigned int ss_vendor, unsigned int ss_device,
struct pci_dev *from)
{
struct list_head *n = from ? from->global_list.next : pci_devices.next;
while (n != &pci_devices) {
struct pci_dev *dev = pci_dev_g(n);
if ((vendor == PCI_ANY_ID || dev->vendor == vendor) &&
(device == PCI_ANY_ID || dev->device == device) &&
(ss_vendor == PCI_ANY_ID || dev->subsystem_vendor == ss_vendor) &&
(ss_device == PCI_ANY_ID || dev->subsystem_device == ss_device))
return dev;
n = n->next;
}
return NULL;
}
struct pci_dev *
pci_find_device(unsigned int vendor, unsigned int device, struct pci_dev *from)
{
return pci_find_subsys(vendor, device, PCI_ANY_ID, PCI_ANY_ID, from);
}
struct pci_dev *
pci_find_class(unsigned int class, struct pci_dev *from)
{
struct list_head *n = from ? from->global_list.next : pci_devices.next;
while (n != &pci_devices) {
struct pci_dev *dev = pci_dev_g(n);
if (dev->class == class)
return dev;
n = n->next;
}
return NULL;
}
int
pci_find_capability(struct pci_dev *dev, int cap)
{
u16 status;
u8 pos, id;
int ttl = 48;
pci_read_config_word(dev, PCI_STATUS, &status);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &pos);
while (ttl-- && pos >= 0x40) {
pos &= ~3;
pci_read_config_byte(dev, pos + PCI_CAP_LIST_ID, &id);
if (id == 0xff)
break;
if (id == cap)
return pos;
pci_read_config_byte(dev, pos + PCI_CAP_LIST_NEXT, &pos);
}
return 0;
}
/*
* For given resource region of given device, return the resource
* region of parent bus the given region is contained in or where
* it should be allocated from.
*/
struct resource *
pci_find_parent_resource(struct pci_dev *dev, struct resource *res)
{
struct pci_bus *bus = dev->bus;
int i;
struct resource *best = NULL;
for(i=0; i<4; i++) {
struct resource *r = bus->resource[i];
if (!r)
continue;
if (res->start && !(res->start >= r->start && res->end <= r->end))
continue; /* Not contained */
if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
continue; /* Wrong type */
if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
return r; /* Exact match */
if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
best = r; /* Approximating prefetchable by non-prefetchable */
}
return best;
}
/*
* Set power management state of a device. For transitions from state D3
* it isn't as straightforward as one could assume since many devices forget
* their configuration space during wakeup. Returns old power state.
*/
int
pci_set_power_state(struct pci_dev *dev, int new_state)
{
u32 base[5], romaddr;
u16 pci_command, pwr_command;
u8 pci_latency, pci_cacheline;
int i, old_state;
int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
if (!pm)
return 0;
pci_read_config_word(dev, pm + PCI_PM_CTRL, &pwr_command);
old_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
if (old_state == new_state)
return old_state;
DBG("PCI: %s goes from D%d to D%d\n", dev->slot_name, old_state, new_state);
if (old_state == 3) {
pci_read_config_word(dev, PCI_COMMAND, &pci_command);
pci_write_config_word(dev, PCI_COMMAND, pci_command & ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY));
for (i = 0; i < 5; i++)
pci_read_config_dword(dev, PCI_BASE_ADDRESS_0 + i*4, &base[i]);
pci_read_config_dword(dev, PCI_ROM_ADDRESS, &romaddr);
pci_read_config_byte(dev, PCI_LATENCY_TIMER, &pci_latency);
pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_cacheline);
pci_write_config_word(dev, pm + PCI_PM_CTRL, new_state);
for (i = 0; i < 5; i++)
pci_write_config_dword(dev, PCI_BASE_ADDRESS_0 + i*4, base[i]);
pci_write_config_dword(dev, PCI_ROM_ADDRESS, romaddr);
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, dev->irq);
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cacheline);
pci_write_config_byte(dev, PCI_LATENCY_TIMER, pci_latency);
pci_write_config_word(dev, PCI_COMMAND, pci_command);
} else
pci_write_config_word(dev, pm + PCI_PM_CTRL, (pwr_command & ~PCI_PM_CTRL_STATE_MASK) | new_state);
return old_state;
}
/*
* Initialize device before it's used by a driver. Ask low-level code
* to enable I/O and memory. Wake up the device if it was suspended.
* Beware, this function can fail.
*/
int
pci_enable_device(struct pci_dev *dev)
{
int err;
if ((err = pcibios_enable_device(dev)) < 0)
return err;
pci_set_power_state(dev, 0);
return 0;
}
/*
* Registration of PCI drivers and handling of hot-pluggable devices.
*/
static LIST_HEAD(pci_drivers);
const struct pci_device_id *
pci_match_device(const struct pci_device_id *ids, struct pci_dev *dev)
{
while (ids->vendor || ids->subvendor || ids->class_mask) {
if ((ids->vendor == PCI_ANY_ID || ids->vendor == dev->vendor) &&
(ids->device == PCI_ANY_ID || ids->device == dev->device) &&
(ids->subvendor == PCI_ANY_ID || ids->subvendor == dev->subsystem_vendor) &&
(ids->subdevice == PCI_ANY_ID || ids->subdevice == dev->subsystem_device) &&
!((ids->class ^ dev->class) & ids->class_mask))
return ids;
ids++;
}
return NULL;
}
static int
pci_announce_device(struct pci_driver *drv, struct pci_dev *dev)
{
const struct pci_device_id *id;
if (drv->id_table) {
id = pci_match_device(drv->id_table, dev);
if (!id)
return 0;
} else
id = NULL;
if (drv->probe(dev, id) >= 0) {
dev->driver = drv;
return 1;
}
return 0;
}
int
pci_register_driver(struct pci_driver *drv)
{
struct pci_dev *dev;
int count = 0;
list_add_tail(&drv->node, &pci_drivers);
pci_for_each_dev(dev) {
if (!pci_dev_driver(dev))
count += pci_announce_device(drv, dev);
}
return count;
}
void
pci_unregister_driver(struct pci_driver *drv)
{
struct pci_dev *dev;
list_del(&drv->node);
pci_for_each_dev(dev) {
if (dev->driver == drv) {
if (drv->remove)
drv->remove(dev);
dev->driver = NULL;
}
}
}
#ifdef CONFIG_HOTPLUG
void
pci_insert_device(struct pci_dev *dev, struct pci_bus *bus)
{
struct list_head *ln;
list_add_tail(&dev->bus_list, &bus->devices);
list_add_tail(&dev->global_list, &pci_devices);
#ifdef CONFIG_PROC_FS
pci_proc_attach_device(dev);
#endif
for(ln=pci_drivers.next; ln != &pci_drivers; ln=ln->next) {
struct pci_driver *drv = list_entry(ln, struct pci_driver, node);
if (drv->remove && pci_announce_device(drv, dev))
break;
}
}
static void pci_free_resources(struct pci_dev *dev)
{
int i;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
struct resource *res = dev->resource + i;
if (res->parent)
release_resource(res);
}
}
void
pci_remove_device(struct pci_dev *dev)
{
if (dev->driver->remove)
dev->driver->remove(dev);
dev->driver = NULL;
list_del(&dev->bus_list);
list_del(&dev->global_list);
pci_free_resources(dev);
#ifdef CONFIG_PROC_FS
pci_proc_detach_device(dev);
#endif
}
#endif
static struct pci_driver pci_compat_driver = {
name: "compat"
};
struct pci_driver *
pci_dev_driver(struct pci_dev *dev)
{
if (dev->driver)
return dev->driver;
else {
int i;
for(i=0; i<=PCI_ROM_RESOURCE; i++)
if (dev->resource[i].flags & IORESOURCE_BUSY)
return &pci_compat_driver;
}
return NULL;
}
/*
* This interrupt-safe spinlock protects all accesses to PCI
* configuration space.
*/
static spinlock_t pci_lock = SPIN_LOCK_UNLOCKED;
/*
* Wrappers for all PCI configuration access functions. They just check
* alignment, do locking and call the low-level functions pointed to
* by pci_dev->ops.
*/
#define PCI_byte_BAD 0
#define PCI_word_BAD (pos & 1)
#define PCI_dword_BAD (pos & 3)
#define PCI_OP(rw,size,type) \
int pci_##rw##_config_##size (struct pci_dev *dev, int pos, type value) \
{ \
int res; \
unsigned long flags; \
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
spin_lock_irqsave(&pci_lock, flags); \
res = dev->bus->ops->rw##_##size(dev, pos, value); \
spin_unlock_irqrestore(&pci_lock, flags); \
return res; \
}
PCI_OP(read, byte, u8 *)
PCI_OP(read, word, u16 *)
PCI_OP(read, dword, u32 *)
PCI_OP(write, byte, u8)
PCI_OP(write, word, u16)
PCI_OP(write, dword, u32)
void
pci_set_master(struct pci_dev *dev)
{
u16 cmd;
u8 lat;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
if (! (cmd & PCI_COMMAND_MASTER)) {
printk("PCI: Enabling bus mastering for device %s\n", dev->slot_name);
cmd |= PCI_COMMAND_MASTER;
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
if (lat < 16) {
printk("PCI: Increasing latency timer of device %s to 64\n", dev->slot_name);
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
}
}
/*
* Translate the low bits of the PCI base
* to the resource type
*/
static inline unsigned int pci_resource_flags(unsigned int flags)
{
if (flags & PCI_BASE_ADDRESS_SPACE_IO)
return IORESOURCE_IO;
if (flags & PCI_BASE_ADDRESS_MEM_PREFETCH)
return IORESOURCE_MEM | IORESOURCE_PREFETCH;
return IORESOURCE_MEM;
}
static void pci_read_bases(struct pci_dev *dev, unsigned int howmany, int rom)
{
unsigned int pos, reg, next;
u32 l, sz, tmp;
u16 cmd;
struct resource *res;
/* Disable IO and memory while we fiddle */
pci_read_config_word(dev, PCI_COMMAND, &cmd);
tmp = cmd & ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY);
pci_write_config_word(dev, PCI_COMMAND, tmp);
for(pos=0; pos<howmany; pos = next) {
next = pos+1;
res = &dev->resource[pos];
res->name = dev->name;
reg = PCI_BASE_ADDRESS_0 + (pos << 2);
pci_read_config_dword(dev, reg, &l);
pci_write_config_dword(dev, reg, ~0);
pci_read_config_dword(dev, reg, &sz);
pci_write_config_dword(dev, reg, l);
if (!sz || sz == 0xffffffff)
continue;
if (l == 0xffffffff)
l = 0;
if ((l & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_MEMORY) {
res->start = l & PCI_BASE_ADDRESS_MEM_MASK;
sz = ~(sz & PCI_BASE_ADDRESS_MEM_MASK);
} else {
res->start = l & PCI_BASE_ADDRESS_IO_MASK;
sz = ~(sz & PCI_BASE_ADDRESS_IO_MASK) & 0xffff;
}
res->end = res->start + (unsigned long) sz;
res->flags |= (l & 0xf) | pci_resource_flags(l);
if ((l & (PCI_BASE_ADDRESS_SPACE | PCI_BASE_ADDRESS_MEM_TYPE_MASK))
== (PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64)) {
pci_read_config_dword(dev, reg+4, &l);
next++;
#if BITS_PER_LONG == 64
res->start |= ((unsigned long) l) << 32;
res->end = res->start + sz;
pci_write_config_dword(dev, reg+4, ~0);
pci_read_config_dword(dev, reg+4, &tmp);
pci_write_config_dword(dev, reg+4, l);
if (l)
res->end = res->start + (((unsigned long) ~l) << 32);
#else
if (l) {
printk(KERN_ERR "PCI: Unable to handle 64-bit address for device %s\n", dev->slot_name);
res->start = 0;
res->flags = 0;
continue;
}
#endif
}
}
if (rom) {
dev->rom_base_reg = rom;
res = &dev->resource[PCI_ROM_RESOURCE];
pci_read_config_dword(dev, rom, &l);
pci_write_config_dword(dev, rom, ~PCI_ROM_ADDRESS_ENABLE);
pci_read_config_dword(dev, rom, &sz);
pci_write_config_dword(dev, rom, l);
if (l == 0xffffffff)
l = 0;
if (sz && sz != 0xffffffff) {
res->flags = (l & PCI_ROM_ADDRESS_ENABLE) |
IORESOURCE_MEM | IORESOURCE_PREFETCH | IORESOURCE_READONLY | IORESOURCE_CACHEABLE;
res->start = l & PCI_ROM_ADDRESS_MASK;
sz = ~(sz & PCI_ROM_ADDRESS_MASK);
res->end = res->start + (unsigned long) sz;
}
res->name = dev->name;
}
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
void __init pci_read_bridge_bases(struct pci_bus *child)
{
struct pci_dev *dev = child->self;
u8 io_base_lo, io_limit_lo;
u16 mem_base_lo, mem_limit_lo, io_base_hi, io_limit_hi;
u32 mem_base_hi, mem_limit_hi;
unsigned long base, limit;
struct resource *res;
int i;
if (!dev) /* It's a host bus, nothing to read */
return;
for(i=0; i<3; i++)
child->resource[i] = &dev->resource[PCI_BRIDGE_RESOURCES+i];
res = child->resource[0];
pci_read_config_byte(dev, PCI_IO_BASE, &io_base_lo);
pci_read_config_byte(dev, PCI_IO_LIMIT, &io_limit_lo);
pci_read_config_word(dev, PCI_IO_BASE_UPPER16, &io_base_hi);
pci_read_config_word(dev, PCI_IO_LIMIT_UPPER16, &io_limit_hi);
base = ((io_base_lo & PCI_IO_RANGE_MASK) << 8) | (io_base_hi << 16);
limit = ((io_limit_lo & PCI_IO_RANGE_MASK) << 8) | (io_limit_hi << 16);
if (base && base <= limit) {
res->flags |= (io_base_lo & PCI_IO_RANGE_TYPE_MASK) | IORESOURCE_IO;
res->start = base;
res->end = limit + 0xfff;
res->name = child->name;
}
res = child->resource[1];
pci_read_config_word(dev, PCI_MEMORY_BASE, &mem_base_lo);
pci_read_config_word(dev, PCI_MEMORY_LIMIT, &mem_limit_lo);
base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16;
limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16;
if (base && base <= limit) {
res->flags |= (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM;
res->start = base;
res->end = limit + 0xfffff;
res->name = child->name;
}
res = child->resource[2];
pci_read_config_word(dev, PCI_PREF_MEMORY_BASE, &mem_base_lo);
pci_read_config_word(dev, PCI_PREF_MEMORY_LIMIT, &mem_limit_lo);
pci_read_config_dword(dev, PCI_PREF_BASE_UPPER32, &mem_base_hi);
pci_read_config_dword(dev, PCI_PREF_LIMIT_UPPER32, &mem_limit_hi);
base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16;
limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16;
#if BITS_PER_LONG == 64
base |= ((long) mem_base_hi) << 32;
limit |= ((long) mem_limit_hi) << 32;
#else
if (mem_base_hi || mem_limit_hi) {
printk(KERN_ERR "PCI: Unable to handle 64-bit address space for %s\n", child->name);
return;
}
#endif
if (base && base <= limit) {
res->flags |= (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM | IORESOURCE_PREFETCH;
res->start = base;
res->end = limit + 0xfffff;
res->name = child->name;
}
}
static struct pci_bus * __init pci_alloc_bus(void)
{
struct pci_bus *b;
b = kmalloc(sizeof(*b), GFP_KERNEL);
if (b) {
memset(b, 0, sizeof(*b));
INIT_LIST_HEAD(&b->children);
INIT_LIST_HEAD(&b->devices);
}
return b;
}
static struct pci_bus * __init pci_add_new_bus(struct pci_bus *parent, struct pci_dev *dev, int busnr)
{
struct pci_bus *child;
/*
* Allocate a new bus, and inherit stuff from the parent..
*/
child = pci_alloc_bus();
list_add_tail(&child->node, &parent->children);
child->self = dev;
dev->subordinate = child;
child->parent = parent;
child->ops = parent->ops;
child->sysdata = parent->sysdata;
/*
* Set up the primary, secondary and subordinate
* bus numbers.
*/
child->number = child->secondary = busnr;
child->primary = parent->secondary;
child->subordinate = 0xff;
return child;
}
/*
* A CardBus bridge is basically the same as a regular PCI bridge,
* except we don't scan behind it because it will be changing.
*/
static int __init pci_scan_cardbus(struct pci_bus *bus, struct pci_dev *dev, int busnr)
{
int i;
unsigned short cr;
unsigned int buses;
struct pci_bus *child;
/*
* Insert it into the tree of buses.
*/
DBG("Scanning CardBus bridge %s\n", dev->slot_name);
child = pci_add_new_bus(bus, dev, ++busnr);
for (i = 0; i < 4; i++)
child->resource[i] = &dev->resource[PCI_BRIDGE_RESOURCES+i];
/*
* Maybe we'll have another bus behind this one?
*/
child->subordinate = ++busnr;
sprintf(child->name, "PCI CardBus #%02x", child->number);
/*
* Clear all status bits and turn off memory,
* I/O and master enables.
*/
pci_read_config_word(dev, PCI_COMMAND, &cr);
pci_write_config_word(dev, PCI_COMMAND, 0x0000);
pci_write_config_word(dev, PCI_STATUS, 0xffff);
/*
* Read the existing primary/secondary/subordinate bus
* number configuration to determine if the bridge
* has already been configured by the system. If so,
* do not modify the configuration, merely note it.
*/
pci_read_config_dword(dev, PCI_PRIMARY_BUS, &buses);
if ((buses & 0xFFFFFF) != 0 && ! pcibios_assign_all_busses()) {
child->primary = buses & 0xFF;
child->secondary = (buses >> 8) & 0xFF;
child->subordinate = (buses >> 16) & 0xFF;
child->number = child->secondary;
if (child->subordinate > busnr)
busnr = child->subordinate;
} else {
/*
* Configure the bus numbers for this bridge:
*/
buses &= 0xff000000;
buses |=
(((unsigned int)(child->primary) << 0) |
((unsigned int)(child->secondary) << 8) |
((unsigned int)(child->subordinate) << 16));
pci_write_config_dword(dev, PCI_PRIMARY_BUS, buses);
}
pci_write_config_word(dev, PCI_COMMAND, cr);
return busnr;
}
static unsigned int __init pci_do_scan_bus(struct pci_bus *bus);
/*
* If it's a bridge, scan the bus behind it.
*/
static int __init pci_scan_bridge(struct pci_bus *bus, struct pci_dev * dev, int max)
{
unsigned int buses;
unsigned short cr;
struct pci_bus *child;
/*
* Insert it into the tree of buses.
*/
DBG("Scanning behind PCI bridge %s\n", dev->slot_name);
child = pci_add_new_bus(bus, dev, ++max);
sprintf(child->name, "PCI Bus #%02x", child->number);
/*
* Clear all status bits and turn off memory,
* I/O and master enables.
*/
pci_read_config_word(dev, PCI_COMMAND, &cr);
pci_write_config_word(dev, PCI_COMMAND, 0x0000);
pci_write_config_word(dev, PCI_STATUS, 0xffff);
/*
* Read the existing primary/secondary/subordinate bus
* number configuration to determine if the PCI bridge
* has already been configured by the system. If so,
* do not modify the configuration, merely note it.
*/
pci_read_config_dword(dev, PCI_PRIMARY_BUS, &buses);
if ((buses & 0xFFFFFF) != 0 && ! pcibios_assign_all_busses()) {
unsigned int cmax;
child->primary = buses & 0xFF;
child->secondary = (buses >> 8) & 0xFF;
child->subordinate = (buses >> 16) & 0xFF;
child->number = child->secondary;
cmax = pci_do_scan_bus(child);
if (cmax > max) max = cmax;
} else {
/*
* Configure the bus numbers for this bridge:
*/
buses &= 0xff000000;
buses |=
(((unsigned int)(child->primary) << 0) |
((unsigned int)(child->secondary) << 8) |
((unsigned int)(child->subordinate) << 16));
pci_write_config_dword(dev, PCI_PRIMARY_BUS, buses);
/*
* Now we can scan all subordinate buses:
*/
max = pci_do_scan_bus(child);
/*
* Set the subordinate bus number to its real
* value:
*/
child->subordinate = max;
buses = (buses & 0xff00ffff)
| ((unsigned int)(child->subordinate) << 16);
pci_write_config_dword(dev, PCI_PRIMARY_BUS, buses);
}
pci_write_config_word(dev, PCI_COMMAND, cr);
return max;
}
/*
* Read interrupt line and base address registers.
* The architecture-dependent code can tweak these, of course.
*/
static void pci_read_irq(struct pci_dev *dev)
{
unsigned char irq;
pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq);
if (irq)
pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq);
dev->irq = irq;
}
/*
* Fill in class and map information of a device
*/
int pci_setup_device(struct pci_dev * dev)
{
u32 class;
sprintf(dev->slot_name, "%02x:%02x.%d", dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn));
sprintf(dev->name, "PCI device %04x:%04x", dev->vendor, dev->device);
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
class >>= 8; /* upper 3 bytes */
dev->class = class;
class >>= 8;
DBG("Found %02x:%02x [%04x/%04x] %06x %02x\n", dev->bus->number, dev->devfn, dev->vendor, dev->device, class, dev->hdr_type);
switch (dev->hdr_type) { /* header type */
case PCI_HEADER_TYPE_NORMAL: /* standard header */
if (class == PCI_CLASS_BRIDGE_PCI)
goto bad;
pci_read_irq(dev);
pci_read_bases(dev, 6, PCI_ROM_ADDRESS);
pci_read_config_word(dev, PCI_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor);
pci_read_config_word(dev, PCI_SUBSYSTEM_ID, &dev->subsystem_device);
break;
case PCI_HEADER_TYPE_BRIDGE: /* bridge header */
if (class != PCI_CLASS_BRIDGE_PCI)
goto bad;
pci_read_bases(dev, 2, PCI_ROM_ADDRESS1);
break;
case PCI_HEADER_TYPE_CARDBUS: /* CardBus bridge header */
if (class != PCI_CLASS_BRIDGE_CARDBUS)
goto bad;
pci_read_irq(dev);
pci_read_bases(dev, 1, 0);
pci_read_config_word(dev, PCI_CB_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor);
pci_read_config_word(dev, PCI_CB_SUBSYSTEM_ID, &dev->subsystem_device);
break;
default: /* unknown header */
printk(KERN_ERR "PCI: device %s has unknown header type %02x, ignoring.\n",
dev->slot_name, dev->hdr_type);
return -1;
bad:
printk(KERN_ERR "PCI: %s: class %x doesn't match header type %02x. Ignoring class.\n",
dev->slot_name, class, dev->hdr_type);
dev->class = PCI_CLASS_NOT_DEFINED;
}
/* We found a fine healthy device, go go go... */
return 0;
}
/*
* Read the config data for a PCI device, sanity-check it
* and fill in the dev structure...
*/
static struct pci_dev * __init pci_scan_device(struct pci_dev *temp)
{
struct pci_dev *dev;
u32 l;
if (pci_read_config_dword(temp, PCI_VENDOR_ID, &l))
return NULL;
/* some broken boards return 0 or ~0 if a slot is empty: */
if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || l == 0xffff0000)
return NULL;
dev = kmalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
memcpy(dev, temp, sizeof(*dev));
dev->vendor = l & 0xffff;
dev->device = (l >> 16) & 0xffff;
if (pci_setup_device(dev) < 0) {
kfree(dev);
dev = NULL;
}
return dev;
}
struct pci_dev * __init pci_scan_slot(struct pci_dev *temp)
{
struct pci_bus *bus = temp->bus;
struct pci_dev *dev;
struct pci_dev *first_dev = NULL;
int func = 0;
int is_multi = 0;
u8 hdr_type;
for (func = 0; func < 8; func++, temp->devfn++) {
if (func && !is_multi) /* not a multi-function device */
continue;
if (pci_read_config_byte(temp, PCI_HEADER_TYPE, &hdr_type))
continue;
temp->hdr_type = hdr_type & 0x7f;
dev = pci_scan_device(temp);
if (!dev)
continue;
pci_name_device(dev);
if (!func) {
is_multi = hdr_type & 0x80;
first_dev = dev;
}
/*
* Link the device to both the global PCI device chain and
* the per-bus list of devices.
*/
list_add_tail(&dev->global_list, &pci_devices);
list_add_tail(&dev->bus_list, &bus->devices);
/* Fix up broken headers */
pci_fixup_device(PCI_FIXUP_HEADER, dev);
}
return first_dev;
}
static unsigned int __init pci_do_scan_bus(struct pci_bus *bus)
{
unsigned int devfn, max;
struct list_head *ln;
struct pci_dev *dev, dev0;
DBG("Scanning bus %02x\n", bus->number);
max = bus->secondary;
/* Create a device template */
memset(&dev0, 0, sizeof(dev0));
dev0.bus = bus;
dev0.sysdata = bus->sysdata;
/* Go find them, Rover! */
for (devfn = 0; devfn < 0x100; devfn += 8) {
dev0.devfn = devfn;
pci_scan_slot(&dev0);
}
/*
* After performing arch-dependent fixup of the bus, look behind
* all PCI-to-PCI bridges on this bus.
*/
DBG("Fixups for bus %02x\n", bus->number);
pcibios_fixup_bus(bus);
for (ln=bus->devices.next; ln != &bus->devices; ln=ln->next) {
dev = pci_dev_b(ln);
switch (dev->class >> 8) {
case PCI_CLASS_BRIDGE_PCI:
max = pci_scan_bridge(bus, dev, max);
break;
case PCI_CLASS_BRIDGE_CARDBUS:
max = pci_scan_cardbus(bus, dev, max);
break;
}
}
/*
* We've scanned the bus and so we know all about what's on
* the other side of any bridges that may be on this bus plus
* any devices.
*
* Return how far we've got finding sub-buses.
*/
DBG("Bus scan for %02x returning with max=%02x\n", bus->number, max);
return max;
}
static int __init pci_bus_exists(struct list_head *list, int nr)
{
struct list_head *l;
for(l=list->next; l != list; l = l->next) {
struct pci_bus *b = pci_bus_b(l);
if (b->number == nr || pci_bus_exists(&b->children, nr))
return 1;
}
return 0;
}
struct pci_bus * __init pci_alloc_primary_bus(int bus)
{
struct pci_bus *b;
if (pci_bus_exists(&pci_root_buses, bus)) {
/* If we already got to this bus through a different bridge, ignore it */
DBG("PCI: Bus %02x already known\n", bus);
return NULL;
}
b = pci_alloc_bus();
list_add_tail(&b->node, &pci_root_buses);
b->number = b->secondary = bus;
b->resource[0] = &ioport_resource;
b->resource[1] = &iomem_resource;
return b;
}
struct pci_bus * __init pci_scan_bus(int bus, struct pci_ops *ops, void *sysdata)
{
struct pci_bus *b = pci_alloc_primary_bus(bus);
if (b) {
b->sysdata = sysdata;
b->ops = ops;
b->subordinate = pci_do_scan_bus(b);
}
return b;
}
void __init pci_init(void)
{
struct pci_dev *dev;
pcibios_init();
pci_for_each_dev(dev) {
pci_fixup_device(PCI_FIXUP_FINAL, dev);
}
}
static int __init pci_setup(char *str)
{
while (str) {
char *k = strchr(str, ',');
if (k)
*k++ = 0;
if (*str && (str = pcibios_setup(str)) && *str) {
/* PCI layer options should be handled here */
printk(KERN_ERR "PCI: Unknown option `%s'\n", str);
}
str = k;
}
return 1;
}
__setup("pci=", pci_setup);
|