1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/*
* drivers/sgi/audio/hal2.h
*
* Copyright (C) 1998 Ulf Carlsson (ulfc@bun.falkenberg.se)
*
*/
#define H2_HAL2_BASE (HPC3_CHIP0_PBASE + 0x58000)
#define H2_CTRL_PIO (H2_HAL2_BASE + 0 * 0x200)
#define H2_AES_PIO (H2_HAL2_BASE + 1 * 0x200)
#define H2_VOLUME_PIO (H2_HAL2_BASE + 2 * 0x200)
#define H2_SYNTH_PIO (H2_HAL2_BASE + 3 * 0x200)
typedef volatile unsigned short hal_reg;
struct hal2_ctrl_regs {
hal_reg _unused0[8];
hal_reg isr; /* 0x10 Status Register */
hal_reg _unused1[7];
hal_reg rev; /* 0x20 Revision Register */
hal_reg _unused2[7];
hal_reg iar; /* 0x30 Indirect Address Register */
hal_reg _unused3[7];
hal_reg idr0; /* 0x40 Indirect Data Register 0 */
hal_reg _unused4[7];
hal_reg idr1; /* 0x50 Indirect Data Register 1 */
hal_reg _unused5[7];
hal_reg idr2; /* 0x60 Indirect Data Register 2 */
hal_reg _unused6[7];
hal_reg idr3; /* 0x70 Indirect Data Register 3 */
} volatile *h2_ctrl = (struct hal2_ctrl_regs *) KSEG1ADDR(H2_CTRL_PIO);
struct hal2_vol_regs {
hal_reg right; /* 0x00 Right volume */
hal_reg _unused0[1];
hal_reg left; /* 0x04 Left volume */
} volatile *h2_vol = (struct hal2_vol_regs *) KSEG1ADDR(H2_VOLUME_PIO);
/* AES and synth regs should end up here if we ever support them */
/* Indirect status register */
#define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
#define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */
#define H2_ISR_CODEC_MODE 0x04 /* codec mode 0=indigo 1=quad */
#define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */
#define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */
/* Revision register */
#define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */
#define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */
#define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */
#define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */
/* Indirect address register */
/*
* Address of indirect internal register to be accessed. A write to this
* register initiates read or write access to the indirect registers in the
* HAL2. Note that there af four indirect data registers for write access to
* registers larger than 16 byte.
*/
#define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */
/* block the register resides in */
/* 1=DMA Port */
/* 9=Global DMA Control */
/* 2=Bresenham */
/* 3=Unix Timer */
#define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */
/* blockin which the indirect */
/* register resides */
/* If IAR_TYPE_M=DMA Port: */
/* 1=Synth In */
/* 2=AES In */
/* 3=AES Out */
/* 4=DAC Out */
/* 5=ADC Out */
/* 6=Synth Control */
/* If IAR_TYPE_M=Global DMA Control: */
/* 1=Control */
/* If IAR_TYPE_M=Bresenham: */
/* 1=Bresenham Clock Gen 1 */
/* 2=Bresenham Clock Gen 2 */
/* 3=Bresenham Clock Gen 3 */
/* If IAR_TYPE_M=Unix Timer: */
/* 1=Unix Timer */
#define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */
#define H2_IAR_PARAM 0x000C /* Parameter Select */
#define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */
/* 00:word0 */
/* 01:word1 */
/* 10:word2 */
/* 11:word3 */
/*
* HAL2 internal addressing
*
* The HAL2 has "indirect registers" (idr) which are accessed by writing to the
* Indirect Data registers. Write the address to the Indirect Address register
* to transfer the data.
*
* We define the H2IR_* to the read address and H2IW_* to the write address and
* H2I_* to be fields in whatever register is referred to.
*
* When we write to indirect registers which are larger than one word (16 bit)
* we have to fill more than one indirect register before writing. When we read
* back however we have to read several times, each time with different Read
* Back Indexes (there are defs for doing this easily).
*/
/*
* Relay Control
*/
#define H2IW_RELAY_C 0x9100 /* state of RELAY pin signal */
#define H2IR_RELAY_C 0x9180 /* state of RELAY pin signal */
#define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */
#define H2IW_DMA_PORT_EN 0x09104 /* dma port enable */
#define H2IR_DMA_PORT_EN 0x9184 /* dma port enable */
#define H2I_DMA_PORT_EN_SY_IN 0x01 /* synth_in dma port */
#define H2I_DMA_PORT_EN_AESRX 0x02 /* aes receiver dma port */
#define H2I_DMA_PORT_EN_AESTX 0x04 /* aes transmitter dma port */
#define H2I_DMA_PORT_EN_CODECTX 0x08 /* codec transmit dma port */
#define H2I_DMA_PORT_EN_CODECR 0x10 /* codec receive dma port */
/* 0=disable 1=enable */
#define H2IW_DMA_END 0x9108 /* global dma endian select */
#define H2IR_DMA_END 0x9188 /* global dma endian select */
#define H2I_DMA_END_SY_IN 0x01 /* synth_in dma port */
#define H2I_DMA_END_AESRX 0x02 /* aes receiver dma port */
#define H2I_DMA_END_AESTX 0x04 /* aes transmitter dma port */
#define H2I_DMA_END_CODECTX 0x08 /* codec transmit dma port */
#define H2I_DMA_END_CODECR 0x10 /* codec receive dma port */
/* 0=big endian 1=little endian */
#define H2IW_DMA_DRV 0x910C /* global dma bus drive enable */
#define H2IR_DMA_DRV 0x918C /* global dma bus drive enable */
#define H2IW_SYNTH_C 0x1104 /* synth dma control write */
#define H2IR_SYNTH_C 0x1184 /* synth dma control read */
#define H2IW_AESRX_C 0x1204 /* aes rx dma control write */
#define H2IR_AESRX_C 0x1284 /* aes rx dma control read */
#define H2I_AESRX_C_TS_EN 0x20 /* timestamp enable 0=no 1=yes */
#define H2I_AESRX_C_TS_FMT 0x40 /* timestamp format */
#define H2I_AESRX_C_NAUDIO 0x80 /* pbus dma data format */
/* 0=sign_ext 1=pass_non_audio */
#define H2IW_AESTX_C 0x1304 /* aes tx dma control write */
#define H2IR_AESTX_C 0x1384 /* aes tx dma control read */
#define H2I_AESTX_C_CLKID_M 0x18 /* bits 4:3, clockid */
/* 1=Bresenham Clock Gen 1 */
/* 2=Bresenham Clock Gen 2 */
/* 3=Bresenham Clock Gen 3 */
#define H2I_AESTX_C_DTYPE 0x300 /* bits 9:8, datatype */
/* 1=mono 2=stereo 3=quad */
/* DAC */
#define H2IW_DAC_C1 0x1404 /* dac tx dma control 1 write */
#define H2IR_DAC_C1 0x1484 /* dac tx dma control 1 read */
#define H2I_DAC_C1_CLKID 0x18 /* bits 4:3, clockid */
/* 1=Bresenham Clock Gen 1 */
/* 2=Bresenham Clock Gen 2 */
/* 3=Bresenham Clock Gen 3 */
#define H2I_DAC_C1_DTYPE 0x300 /* bits 9:8 datatype */
/* 1=mono 2=stereo 3=quad */
#define H2IW_DAC_C2 0x1408 /* dac control 2 write word 0 */
#define H2IR_DAC_C2_0 0x1488 /* dac control 2 read word 0 */
#define H2IR_DAC_C2_1 0x1489 /* dac control 2 read word 1 */
/* XXX: The spec says 0x1488 */
#define H2I_DAC_C2_0_R_GAIN 0x0f /* right a/d input gain bit 0-3 */
#define H2I_DAC_C2_0_L_GAIN 0xf0 /* left a/d input gain bit 0-3 */
#define H2I_DAC_C2_0_R_SEL 0x100 /* right a/d input select */
#define H2I_DAC_C2_0_L_SEL 0x200 /* left a/d input select */
#define H2I_DAC_C2_0_MUTE 0x400 /* 1=mute */
#define H2I_DAC_C2_1_DO1 0x01 /* digital output port bit 1 */
#define H2I_DAC_C2_1_DO2 0x02 /* digital output port bit 0 */
#define H2I_DAC_C2_1_R_ATTEN 0x7c /* bits 6:2 right a/d output */
/* attenuation, bit 0-4 (4=msb) */
#define H2I_DAC_C2_1_L_ATTEN 0xf80 /* bits 11:7 left a/d output */
/* attenuation, bit 0-4 (4=msb) */
/* ADC */
#define H2IW_ADC_C1 0x1504 /* adc tx dma control 1 write */
#define H2IR_ADC_C1 0x1584 /* adc tx dma control 1 read */
#define H2I_ADC_C1_CLKID 0x18 /* bits 4:3, clockid */
/* 1=Bresenham Clock Gen 1 */
/* 2=Bresenham Clock Gen 2 */
/* 3=Bresenham Clock Gen 3 */
#define H2I_ADC_C1_DTYPE 0x300 /* bits 9:8, datatype */
/* 1=mono 2=stereo 3=quad */
#define H2IW_ADC_C2 0x1508 /* adc control 2 write word 0-1 */
/* both words have to be written at */
/* the same time, fill idr[0-1] */
#define H2IR_ADC_C2_0 0x1588 /* adc control 2 read word 0 */
#define H2IR_ADC_C2_1 0x1589 /* adc control 2 read word 1 */
/* XXX: The spec says 0x1588 */
#define H2I_ADC_C2_0_R_GAIN 0x0f /* right a/d input gain bit 0-3 */
#define H2I_ADC_C2_0_L_GAIN 0xf0 /* left a/d input gain bit 0-3 */
#define H2I_ADC_C2_0_R_SEL 0x100 /* right a/d input select */
#define H2I_ADC_C2_0_L_SEL 0x200 /* left a/d input select */
#define H2I_ADC_C2_0_MUTE 0x400 /* 1=mute */
#define H2I_ADC_C2_1_DO1 0x01 /* digital output port bit 1 */
#define H2I_ADC_C2_1_DO2 0x02 /* digital output port bit 0 */
#define H2I_ADC_C2_1_R_ATTEN 0x7c /* bits 6:2, right a/d output */
/* attenuation, bit 0-4 (4=msb) */
#define H2I_ADC_C2_1_L_ATTEN 0xf80 /* bits 11:7, left a/d output */
/* attenuation, bit 0-4 (4=msb) */
#define H2IW_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl write */
#define H2IR_SYNTH_MAP_C 0x1184 /* synth dma handshake ctrl read */
#define H2IW_BRES1_C1 0x2104 /* clock gen 1 ctrl 1 write */
#define H2IR_BRES1_C1 0x2184 /* clock gen 1 ctrl 1 read */
#define H2I_BRES1_C1_FSRSEL 0x03 /* master clock source */
/* 0=48.0 1=44.1 2=aes_rx */
#define H2IW_BRES1_C2 0x2108 /* clock gen 1 ctrl 2 write word 0-1 */
#define H2IR_BRES1_C2_0 0x2188 /* clock gen 1 ctrl 2 read word 0 */
#define H2IR_BRES1_C2_1 0x2189 /* clock gen 1 ctrl 2 read word 1 */
/* XXX: The spec says 0x2188 */
#define H2I_BRES1_C2_0_INC 0xffff /* increment value, inc <= mod */
#define H2I_BRES1_C2_1_INC 0xffff /* modcontrol value, */
/* modctrl=0x00ffff & (modinc-1) */
#define H2IW_BRES2_C1 0x2204 /* clock gen 2 ctrl 1 write */
#define H2IR_BRES2_C1 0x2284 /* clock gen 2 ctrl 1 read */
#define H2I_BRES2_C1_FSRSEL 0x03 /* master clock source */
/* 0=48.0 1=44.1 2=aes_rx */
#define H2IW_BRES2_C2 0x2208 /* clock gen 2 ctrl 2 write word 0-1 */
#define H2IR_BRES2_C2_0 0x2288 /* clock gen 2 ctrl 2 read word 0 */
#define H2IR_BRES2_C2_1 0x2289 /* clock gen 2 ctrl 2 read word 1 */
#define H2I_BRES2_C2_0_INC 0xffff /* increment value, inc <= mod */
#define H2I_BRES2_C2_1_INC 0xffff /* modcontrol value, */
/* modctrl=0x00ffff & (modinc-1) */
#define H2IW_BRES3_C1 0x2304 /* clock gen 3 ctrl 1 write */
#define H2IR_BRES3_C1 0x2384 /* clock gen 3 ctrl 1 read */
#define H2I_BRES3_C1_FSRSEL 0x03 /* master clock source */
/* 0=48.0 1=44.1 2=aes_rx */
#define H2IW_BRES3_C2 0x2308 /* clock gen 3 ctrl 2 write word 0-1 */
#define H2IR_BRES3_C2_0 0x2388 /* clock gen 3 ctrl 2 read word 0 */
#define H2IR_BRES3_C2_1 0x2389 /* clock gen 3 ctrl 2 read word 1 */
#define H2I_BRES3_C2_0_INC 0xffff /* increment value, inc <= mod */
#define H2I_BRES3_C2_1_INC 0xffff /* modcontrol value, */
/* modctrl=0x00ffff & (modinc-1) */
#define H2IW_UTIME 0x3104 /* unix timer write (preload time) */
#define H2IR_UTIME 0x3184 /* unix timer read */
#define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */
#define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */
#define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */
#define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
#define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
|