1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
#ifndef __LINUX_UHCI_H
#define __LINUX_UHCI_H
#include <linux/list.h>
#include "usb.h"
/*
* Universal Host Controller Interface data structures and defines
*/
/* Command register */
#define USBCMD 0
#define USBCMD_RS 0x0001 /* Run/Stop */
#define USBCMD_HCRESET 0x0002 /* Host reset */
#define USBCMD_GRESET 0x0004 /* Global reset */
#define USBCMD_EGSM 0x0008 /* Global Suspend Mode */
#define USBCMD_FGR 0x0010 /* Force Global Resume */
#define USBCMD_SWDBG 0x0020 /* SW Debug mode */
#define USBCMD_CF 0x0040 /* Config Flag (sw only) */
#define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */
/* Status register */
#define USBSTS 2
#define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */
#define USBSTS_ERROR 0x0002 /* Interrupt due to error */
#define USBSTS_RD 0x0004 /* Resume Detect */
#define USBSTS_HSE 0x0008 /* Host System Error - basically PCI problems */
#define USBSTS_HCPE 0x0010 /* Host Controller Process Error - the scripts were buggy */
#define USBSTS_HCH 0x0020 /* HC Halted */
/* Interrupt enable register */
#define USBINTR 4
#define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */
#define USBINTR_RESUME 0x0002 /* Resume interrupt enable */
#define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */
#define USBINTR_SP 0x0008 /* Short packet interrupt enable */
#define USBFRNUM 6
#define USBFLBASEADD 8
#define USBSOF 12
/* USB port status and control registers */
#define USBPORTSC1 16
#define USBPORTSC2 18
#define USBPORTSC_CCS 0x0001 /* Current Connect Status ("device present") */
#define USBPORTSC_CSC 0x0002 /* Connect Status Change */
#define USBPORTSC_PE 0x0004 /* Port Enable */
#define USBPORTSC_PEC 0x0008 /* Port Enable Change */
#define USBPORTSC_LS 0x0030 /* Line Status */
#define USBPORTSC_RD 0x0040 /* Resume Detect */
#define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */
#define USBPORTSC_PR 0x0200 /* Port Reset */
#define USBPORTSC_SUSP 0x1000 /* Suspend */
struct uhci_qh {
unsigned int link; /* Next queue */
unsigned int element; /* Queue element pointer */
int inuse; /* Inuse? */
struct uhci_qh *skel; /* Skeleton head */
} __attribute__((aligned(16)));
struct uhci_framelist {
unsigned int frame[1024];
} __attribute__((aligned(4096)));
/*
* The documentation says "4 words for hardware, 4 words for software".
*
* That's silly, the hardware doesn't care. The hardware only cares that
* the hardware words are 16-byte aligned, and we can have any amount of
* sw space after the TD entry as far as I can tell.
*
* But let's just go with the documentation, at least for 32-bit machines.
* On 64-bit machines we probably want to take advantage of the fact that
* hw doesn't really care about the size of the sw-only area.
*
* Alas, not anymore, we have more than 4 words of software, woops
*/
struct uhci_td {
/* Hardware fields */
__u32 link;
__u32 status;
__u32 info;
__u32 buffer;
/* Software fields */
struct list_head irq_list; /* Active interrupt list.. */
usb_device_irq completed; /* Completion handler routine */
unsigned int *backptr; /* Where to remove this from.. */
void *dev_id;
int inuse; /* Inuse? */
struct uhci_qh *qh;
} __attribute__((aligned(32)));
/*
* Note the alignment requirements of the entries
*
* Each UHCI device has pre-allocated QH and TD entries.
* You can use more than the pre-allocated ones, but I
* don't see you usually needing to.
*/
struct uhci;
#define UHCI_MAXTD 64
#define UHCI_MAXQH 16
/* The usb device part must be first! */
struct uhci_device {
struct usb_device *usb;
struct uhci *uhci;
struct uhci_qh qh[UHCI_MAXQH]; /* These are the "common" qh's for each device */
struct uhci_td td[UHCI_MAXTD];
unsigned long data[16];
};
#define uhci_to_usb(uhci) ((uhci)->usb)
#define usb_to_uhci(usb) ((struct uhci_device *)(usb)->hcpriv)
/*
* The root hub pre-allocated QH's and TD's have
* some special global uses..
*/
#define control_td td /* Td's 0-30 */
/* This is only for the root hub's TD list */
#define tick_td td[31]
/*
* There are various standard queues. We set up several different
* queues for each of the three basic queue types: interrupt,
* control, and bulk.
*
* - There are various different interrupt latencies: ranging from
* every other USB frame (2 ms apart) to every 256 USB frames (ie
* 256 ms apart). Make your choice according to how obnoxious you
* want to be on the wire, vs how critical latency is for you.
* - The control list is done every frame.
* - There are 4 bulk lists, so that up to four devices can have a
* bulk list of their own and when run concurrently all four lists
* will be be serviced.
*
* This is a bit misleading, there are various interrupt latencies, but they
* vary a bit, interrupt2 isn't exactly 2ms, it can vary up to 4ms since the
* other queues can "override" it. interrupt4 can vary up to 8ms, etc. Minor
* problem
*
* In the case of the root hub, these QH's are just head's of qh's. Don't
* be scared, it kinda makes sense. Look at this wonderful picture care of
* Linus:
*
* generic-iso-QH -> dev1-iso-QH -> generic-irq-QH -> dev1-irq-QH -> ...
* | | | |
* End dev1-iso-TD1 End dev1-irq-TD1
* |
* dev1-iso-TD2
* |
* ....
*
* This may vary a bit (the UHCI docs don't explicitly say you can put iso
* transfers in QH's and all of their pictures don't have that either) but
* other than that, that is what we're doing now
*
* To keep with Linus' nomenclature, this is called the qh skeleton. These
* labels (below) are only signficant to the root hub's qh's
*/
#define skel_iso_qh qh[0]
#define skel_int2_qh qh[1]
#define skel_int4_qh qh[2]
#define skel_int8_qh qh[3]
#define skel_int16_qh qh[4]
#define skel_int32_qh qh[5]
#define skel_int64_qh qh[6]
#define skel_int128_qh qh[7]
#define skel_int256_qh qh[8]
#define skel_control_qh qh[9]
#define skel_bulk0_qh qh[10]
#define skel_bulk1_qh qh[11]
#define skel_bulk2_qh qh[12]
#define skel_bulk3_qh qh[13]
/*
* These are significant to the devices allocation of QH's
*/
#if 0
#define iso_qh qh[0]
#define int_qh qh[1] /* We have 2 "common" interrupt QH's */
#define control_qh qh[3]
#define bulk_qh qh[4] /* We have 4 "common" bulk QH's */
#define extra_qh qh[8] /* The rest, anything goes */
#endif
/*
* This describes the full uhci information.
*
* Note how the "proper" USB information is just
* a subset of what the full implementation needs.
*/
struct uhci {
int irq;
unsigned int io_addr;
struct usb_bus *bus;
#if 0
/* These are "standard" QH's for the entire bus */
struct uhci_qh qh[UHCI_MAXQH];
#endif
struct uhci_device *root_hub; /* Root hub device descriptor.. */
struct uhci_framelist *fl; /* Frame list */
struct list_head interrupt_list; /* List of interrupt-active TD's for this uhci */
};
/* needed for the debugging code */
struct uhci_td *uhci_link_to_td(unsigned int element);
/* Debugging code */
void show_td(struct uhci_td * td);
void show_status(struct uhci *uhci);
void show_queues(struct uhci *uhci);
#endif
|