1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
/* -*- c -*- --------------------------------------------------------------- *
*
* linux/fs/autofs/expire.c
*
* Copyright 1997-1998 Transmeta Corporation -- All Rights Reserved
* Copyright 1999-2000 Jeremy Fitzhardinge <jeremy@goop.org>
*
* This file is part of the Linux kernel and is made available under
* the terms of the GNU General Public License, version 2, or at your
* option, any later version, incorporated herein by reference.
*
* ------------------------------------------------------------------------- */
#include "autofs_i.h"
/*
* Determine if a subtree of the namespace is busy.
*
* mnt is the mount tree under the autofs mountpoint
*/
static inline int is_vfsmnt_tree_busy(struct vfsmount *mnt)
{
struct vfsmount *this_parent = mnt;
struct list_head *next;
int count;
count = atomic_read(&mnt->mnt_count) - 1;
repeat:
next = this_parent->mnt_mounts.next;
DPRINTK(("is_vfsmnt_tree_busy: mnt=%p, this_parent=%p, next=%p\n",
mnt, this_parent, next));
resume:
for( ; next != &this_parent->mnt_mounts; next = next->next) {
struct vfsmount *p = list_entry(next, struct vfsmount,
mnt_child);
/* -1 for struct vfs_mount's normal count,
-1 to compensate for child's reference to parent */
count += atomic_read(&p->mnt_count) - 1 - 1;
DPRINTK(("is_vfsmnt_tree_busy: p=%p, count now %d\n",
p, count));
if (!list_empty(&p->mnt_mounts)) {
this_parent = p;
goto repeat;
}
/* root is busy if any leaf is busy */
if (atomic_read(&p->mnt_count) > 1)
return 1;
}
/* All done at this level ... ascend and resume the search. */
if (this_parent != mnt) {
next = this_parent->mnt_child.next;
this_parent = this_parent->mnt_parent;
goto resume;
}
DPRINTK(("is_vfsmnt_tree_busy: count=%d\n", count));
return count != 0; /* remaining users? */
}
/* Traverse a dentry's list of vfsmounts and return the number of
non-busy mounts */
static int check_vfsmnt(struct vfsmount *mnt, struct dentry *dentry)
{
int ret = 0;
struct list_head *tmp;
list_for_each(tmp, &dentry->d_vfsmnt) {
struct vfsmount *vfs = list_entry(tmp, struct vfsmount,
mnt_clash);
DPRINTK(("check_vfsmnt: mnt=%p, dentry=%p, tmp=%p, vfs=%p\n",
mnt, dentry, tmp, vfs));
if (vfs->mnt_parent != mnt || /* don't care about busy-ness of other namespaces */
!is_vfsmnt_tree_busy(vfs))
ret++;
}
DPRINTK(("check_vfsmnt: ret=%d\n", ret));
return ret;
}
/* Check dentry tree for busyness. If a dentry appears to be busy
because it is a mountpoint, check to see if the mounted
filesystem is busy. */
static int is_tree_busy(struct vfsmount *topmnt, struct dentry *top)
{
struct dentry *this_parent;
struct list_head *next;
int count;
count = atomic_read(&top->d_count);
DPRINTK(("is_tree_busy: top=%p initial count=%d\n",
top, count));
this_parent = top;
count--; /* top is passed in after being dgot */
if (is_autofs4_dentry(top)) {
count--;
DPRINTK(("is_tree_busy: autofs; count=%d\n", count));
}
if (d_mountpoint(top))
count -= check_vfsmnt(topmnt, top);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
int adj = 0;
struct dentry *dentry = list_entry(next, struct dentry,
d_child);
next = next->next;
count += atomic_read(&dentry->d_count) - 1;
if (d_mountpoint(dentry))
adj += check_vfsmnt(topmnt, dentry);
if (is_autofs4_dentry(dentry)) {
adj++;
DPRINTK(("is_tree_busy: autofs; adj=%d\n",
adj));
}
count -= adj;
if (!list_empty(&dentry->d_subdirs)) {
this_parent = dentry;
goto repeat;
}
if (atomic_read(&dentry->d_count) != adj) {
DPRINTK(("is_tree_busy: busy leaf (d_count=%d adj=%d)\n",
atomic_read(&dentry->d_count), adj));
return 1;
}
}
/* All done at this level ... ascend and resume the search. */
if (this_parent != top) {
next = this_parent->d_child.next;
this_parent = this_parent->d_parent;
goto resume;
}
DPRINTK(("is_tree_busy: count=%d\n", count));
return count != 0; /* remaining users? */
}
/*
* Find an eligible tree to time-out
* A tree is eligible if :-
* - it is unused by any user process
* - it has been unused for exp_timeout time
*/
static struct dentry *autofs4_expire(struct super_block *sb,
struct vfsmount *mnt,
struct autofs_sb_info *sbi,
int do_now)
{
unsigned long now = jiffies;
unsigned long timeout;
struct dentry *root = sb->s_root;
struct list_head *tmp;
struct dentry *d;
struct vfsmount *p;
if (!sbi->exp_timeout || !root)
return NULL;
timeout = sbi->exp_timeout;
spin_lock(&dcache_lock);
for(tmp = root->d_subdirs.next;
tmp != &root->d_subdirs;
tmp = tmp->next) {
struct autofs_info *ino;
struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
if (dentry->d_inode == NULL)
continue;
ino = autofs4_dentry_ino(dentry);
if (ino == NULL) {
/* dentry in the process of being deleted */
continue;
}
/* No point expiring a pending mount */
if (dentry->d_flags & DCACHE_AUTOFS_PENDING)
continue;
if (!do_now) {
/* Too young to die */
if (time_after(ino->last_used + timeout, now))
continue;
/* update last_used here :-
- obviously makes sense if it is in use now
- less obviously, prevents rapid-fire expire
attempts if expire fails the first time */
ino->last_used = now;
}
p = mntget(mnt);
d = dget_locked(dentry);
if (!is_tree_busy(p, d)) {
DPRINTK(("autofs_expire: returning %p %.*s\n",
dentry, (int)dentry->d_name.len, dentry->d_name.name));
/* Start from here next time */
list_del(&root->d_subdirs);
list_add(&root->d_subdirs, &dentry->d_child);
spin_unlock(&dcache_lock);
dput(d);
mntput(p);
return dentry;
}
dput(d);
mntput(p);
}
spin_unlock(&dcache_lock);
return NULL;
}
/* Perform an expiry operation */
int autofs4_expire_run(struct super_block *sb,
struct vfsmount *mnt,
struct autofs_sb_info *sbi,
struct autofs_packet_expire *pkt_p)
{
struct autofs_packet_expire pkt;
struct dentry *dentry;
memset(&pkt,0,sizeof pkt);
pkt.hdr.proto_version = sbi->version;
pkt.hdr.type = autofs_ptype_expire;
if ((dentry = autofs4_expire(sb, mnt, sbi, 0)) == NULL)
return -EAGAIN;
pkt.len = dentry->d_name.len;
memcpy(pkt.name, dentry->d_name.name, pkt.len);
pkt.name[pkt.len] = '\0';
if ( copy_to_user(pkt_p, &pkt, sizeof(struct autofs_packet_expire)) )
return -EFAULT;
return 0;
}
/* Call repeatedly until it returns -EAGAIN, meaning there's nothing
more to be done */
int autofs4_expire_multi(struct super_block *sb, struct vfsmount *mnt,
struct autofs_sb_info *sbi, int *arg)
{
struct dentry *dentry;
int ret = -EAGAIN;
int do_now = 0;
if (arg && get_user(do_now, arg))
return -EFAULT;
if ((dentry = autofs4_expire(sb, mnt, sbi, do_now)) != NULL) {
struct autofs_info *de_info = autofs4_dentry_ino(dentry);
/* This is synchronous because it makes the daemon a
little easier */
de_info->flags |= AUTOFS_INF_EXPIRING;
ret = autofs4_wait(sbi, &dentry->d_name, NFY_EXPIRE);
de_info->flags &= ~AUTOFS_INF_EXPIRING;
}
return ret;
}
|