1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/*
* linux/fs/hfs/balloc.c
*
* Copyright (C) 1995-1997 Paul H. Hargrove
* This file may be distributed under the terms of the GNU General Public License.
*
* hfs_bnode_alloc() and hfs_bnode_bitop() are based on GPLed code
* Copyright (C) 1995 Michael Dreher
*
* This file contains the code to create and destroy nodes
* in the B-tree structure.
*
* "XXX" in a comment is a note to myself to consider changing something.
*
* In function preconditions the term "valid" applied to a pointer to
* a structure means that the pointer is non-NULL and the structure it
* points to has all fields initialized to consistent values.
*
* The code in this file initializes some structures which contain
* pointers by calling memset(&foo, 0, sizeof(foo)).
* This produces the desired behavior only due to the non-ANSI
* assumption that the machine representation of NULL is all zeros.
*/
#include "hfs_btree.h"
/*================ File-local functions ================*/
/*
* get_new_node()
*
* Get a buffer for a new node with out reading it from disk.
*/
static hfs_buffer get_new_node(struct hfs_btree *tree, hfs_u32 node)
{
int tmp;
hfs_buffer retval = HFS_BAD_BUFFER;
tmp = hfs_extent_map(&tree->entry.u.file.data_fork, node, 0);
if (tmp) {
retval = hfs_buffer_get(tree->sys_mdb, tmp, 0);
}
return retval;
}
/*
* hfs_bnode_init()
*
* Description:
* Initialize a newly allocated bnode.
* Input Variable(s):
* struct hfs_btree *tree: Pointer to a B-tree
* hfs_u32 node: the node number to allocate
* Output Variable(s):
* NONE
* Returns:
* struct hfs_bnode_ref for the new node
* Preconditions:
* 'tree' points to a "valid" (struct hfs_btree)
* 'node' exists and has been allocated in the bitmap of bnodes.
* Postconditions:
* On success:
* The node is not read from disk, nor added to the bnode cache.
* The 'sticky' and locking-related fields are all zero/NULL.
* The bnode's nd{[FB]Link, Type, NHeight} fields are uninitialized.
* The bnode's ndNRecs field and offsets table indicate an empty bnode.
* On failure:
* The node is deallocated.
*/
static struct hfs_bnode_ref hfs_bnode_init(struct hfs_btree * tree,
hfs_u32 node)
{
#if defined(DEBUG_BNODES) || defined(DEBUG_ALL)
extern int bnode_count;
#endif
struct hfs_bnode_ref retval;
retval.lock_type = HFS_LOCK_NONE;
if (!HFS_NEW(retval.bn)) {
hfs_warn("hfs_bnode_init: out of memory.\n");
goto bail2;
}
/* Partially initialize the in-core structure */
memset(retval.bn, 0, sizeof(*retval.bn));
retval.bn->magic = HFS_BNODE_MAGIC;
retval.bn->tree = tree;
retval.bn->node = node;
hfs_init_waitqueue(&retval.bn->wqueue);
hfs_init_waitqueue(&retval.bn->rqueue);
hfs_bnode_lock(&retval, HFS_LOCK_WRITE);
retval.bn->buf = get_new_node(tree, node);
if (!hfs_buffer_ok(retval.bn->buf)) {
goto bail1;
}
#if defined(DEBUG_BNODES) || defined(DEBUG_ALL)
++bnode_count;
#endif
/* Partially initialize the on-disk structure */
memset(hfs_buffer_data(retval.bn->buf), 0, HFS_SECTOR_SIZE);
hfs_put_hs(sizeof(struct NodeDescriptor), RECTBL(retval.bn, 1));
return retval;
bail1:
HFS_DELETE(retval.bn);
bail2:
/* clear the bit in the bitmap */
hfs_bnode_bitop(tree, node, 0);
return retval;
}
/*
* init_mapnode()
*
* Description:
* Initializes a given node as a mapnode in the given tree.
* Input Variable(s):
* struct hfs_bnode *bn: the node to add the mapnode after.
* hfs_u32: the node to use as a mapnode.
* Output Variable(s):
* NONE
* Returns:
* struct hfs_bnode *: the new mapnode or NULL
* Preconditions:
* 'tree' is a valid (struct hfs_btree).
* 'node' is the number of the first node in 'tree' that is not
* represented by a bit in the existing mapnodes.
* Postconditions:
* On failure 'tree' is unchanged and NULL is returned.
* On success the node given by 'node' has been added to the linked
* list of mapnodes attached to 'tree', and has been initialized as
* a valid mapnode with its first bit set to indicate itself as
* allocated.
*/
static struct hfs_bnode *init_mapnode(struct hfs_bnode *bn, hfs_u32 node)
{
#if defined(DEBUG_BNODES) || defined(DEBUG_ALL)
extern int bnode_count;
#endif
struct hfs_bnode *retval;
if (!HFS_NEW(retval)) {
hfs_warn("hfs_bnode_add: out of memory.\n");
return NULL;
}
memset(retval, 0, sizeof(*retval));
retval->magic = HFS_BNODE_MAGIC;
retval->tree = bn->tree;
retval->node = node;
retval->sticky = HFS_STICKY;
retval->buf = get_new_node(bn->tree, node);
if (!hfs_buffer_ok(retval->buf)) {
HFS_DELETE(retval);
return NULL;
}
#if defined(DEBUG_BNODES) || defined(DEBUG_ALL)
++bnode_count;
#endif
/* Initialize the bnode data structure */
memset(hfs_buffer_data(retval->buf), 0, HFS_SECTOR_SIZE);
retval->ndFLink = 0;
retval->ndBLink = bn->node;
retval->ndType = ndMapNode;
retval->ndNHeight = 0;
retval->ndNRecs = 1;
hfs_put_hs(sizeof(struct NodeDescriptor), RECTBL(retval, 1));
hfs_put_hs(0x1fa, RECTBL(retval, 2));
*((hfs_u8 *)bnode_key(retval, 1)) = 0x80; /* set first bit of bitmap */
retval->prev = bn;
hfs_bnode_commit(retval);
bn->ndFLink = node;
bn->next = retval;
hfs_bnode_commit(bn);
return retval;
}
/*================ Global functions ================*/
/*
* hfs_bnode_bitop()
*
* Description:
* Allocate/free the requested node of a B-tree of the hfs filesystem
* by setting/clearing the corresponding bit in the B-tree bitmap.
* The size of the B-tree will not be changed.
* Input Variable(s):
* struct hfs_btree *tree: Pointer to a B-tree
* hfs_u32 bitnr: The node number to free
* int set: 0 to clear the bit, non-zero to set it.
* Output Variable(s):
* None
* Returns:
* 0: no error
* -1: The node was already allocated/free, nothing has been done.
* -2: The node is out of range of the B-tree.
* -4: not enough map nodes to hold all the bits
* Preconditions:
* 'tree' points to a "valid" (struct hfs_btree)
* 'bitnr' is a node number within the range of the btree, which is
* currently free/allocated.
* Postconditions:
* The bit number 'bitnr' of the node bitmap is set/cleared and the
* number of free nodes in the btree is decremented/incremented by one.
*/
int hfs_bnode_bitop(struct hfs_btree *tree, hfs_u32 bitnr, int set)
{
struct hfs_bnode *bn; /* the current bnode */
hfs_u16 start; /* the start (in bits) of the bitmap in node */
hfs_u16 len; /* the len (in bits) of the bitmap in node */
hfs_u32 *u32; /* address of the u32 containing the bit */
if (bitnr >= tree->bthNNodes) {
hfs_warn("hfs_bnode_bitop: node number out of range.\n");
return -2;
}
bn = &tree->head;
for (;;) {
start = bnode_offset(bn, bn->ndNRecs) << 3;
len = (bnode_offset(bn, bn->ndNRecs + 1) << 3) - start;
if (bitnr < len) {
break;
}
/* continue on to next map node if available */
if (!(bn = bn->next)) {
hfs_warn("hfs_bnode_bitop: too few map nodes.\n");
return -4;
}
bitnr -= len;
}
/* Change the correct bit */
bitnr += start;
u32 = (hfs_u32 *)hfs_buffer_data(bn->buf) + (bitnr >> 5);
bitnr %= 32;
if ((set && hfs_set_bit(bitnr, u32)) ||
(!set && !hfs_clear_bit(bitnr, u32))) {
hfs_warn("hfs_bnode_bitop: bitmap corruption.\n");
return -1;
}
hfs_buffer_dirty(bn->buf);
/* adjust the free count */
tree->bthFree += (set ? -1 : 1);
tree->dirt = 1;
return 0;
}
/*
* hfs_bnode_alloc()
*
* Description:
* Find a cleared bit in the B-tree node bitmap of the hfs filesystem,
* set it and return the corresponding bnode, with its contents zeroed.
* When there is no free bnode in the tree, an error is returned, no
* new nodes will be added by this function!
* Input Variable(s):
* struct hfs_btree *tree: Pointer to a B-tree
* Output Variable(s):
* NONE
* Returns:
* struct hfs_bnode_ref for the new bnode
* Preconditions:
* 'tree' points to a "valid" (struct hfs_btree)
* There is at least one free bnode.
* Postconditions:
* On success:
* The corresponding bit in the btree bitmap is set.
* The number of free nodes in the btree is decremented by one.
* The node is not read from disk, nor added to the bnode cache.
* The 'sticky' field is uninitialized.
*/
struct hfs_bnode_ref hfs_bnode_alloc(struct hfs_btree *tree)
{
struct hfs_bnode *bn; /* the current bnode */
hfs_u32 bitnr = 0; /* which bit are we examining */
hfs_u16 first; /* the first clear bit in this bnode */
hfs_u16 start; /* the start (in bits) of the bitmap in node */
hfs_u16 end; /* the end (in bits) of the bitmap in node */
hfs_u32 *data; /* address of the data in this bnode */
bn = &tree->head;
for (;;) {
start = bnode_offset(bn, bn->ndNRecs) << 3;
end = bnode_offset(bn, bn->ndNRecs + 1) << 3;
data = (hfs_u32 *)hfs_buffer_data(bn->buf);
/* search the current node */
first = hfs_find_zero_bit(data, end, start);
if (first < end) {
break;
}
/* continue search in next map node */
bn = bn->next;
if (!bn) {
hfs_warn("hfs_bnode_alloc: too few map nodes.\n");
goto bail;
}
bitnr += (end - start);
}
if ((bitnr += (first - start)) >= tree->bthNNodes) {
hfs_warn("hfs_bnode_alloc: no free nodes found, "
"count wrong?\n");
goto bail;
}
if (hfs_set_bit(first % 32, data + (first>>5))) {
hfs_warn("hfs_bnode_alloc: bitmap corruption.\n");
goto bail;
}
hfs_buffer_dirty(bn->buf);
/* decrement the free count */
--tree->bthFree;
tree->dirt = 1;
return hfs_bnode_init(tree, bitnr);
bail:
return (struct hfs_bnode_ref){NULL, HFS_LOCK_NONE};
}
/*
* hfs_btree_extend()
*
* Description:
* Adds nodes to a B*-tree if possible.
* Input Variable(s):
* struct hfs_btree *tree: the btree to add nodes to.
* Output Variable(s):
* NONE
* Returns:
* void
* Preconditions:
* 'tree' is a valid (struct hfs_btree *).
* Postconditions:
* If possible the number of nodes indicated by the tree's clumpsize
* have been added to the tree, updating all in-core and on-disk
* allocation information.
* If insufficient disk-space was available then fewer nodes may have
* been added than would be expected based on the clumpsize.
* In the case of the extents B*-tree this function will add fewer
* nodes than expected if adding more would result in an extent
* record for the extents tree being added to the extents tree.
* The situation could be dealt with, but doing so confuses Macs.
*/
void hfs_btree_extend(struct hfs_btree *tree)
{
struct hfs_bnode_ref head;
struct hfs_bnode *bn, *tmp;
struct hfs_cat_entry *entry = &tree->entry;
struct hfs_mdb *mdb = entry->mdb;
hfs_u32 old_nodes, new_nodes, total_nodes, new_mapnodes, seen;
old_nodes = entry->u.file.data_fork.psize;
entry->u.file.data_fork.lsize += 1; /* rounded up to clumpsize */
hfs_extent_adj(&entry->u.file.data_fork);
total_nodes = entry->u.file.data_fork.psize;
entry->u.file.data_fork.lsize = total_nodes << HFS_SECTOR_SIZE_BITS;
new_nodes = total_nodes - old_nodes;
if (!new_nodes) {
return;
}
head = hfs_bnode_find(tree, 0, HFS_LOCK_WRITE);
if (!(bn = head.bn)) {
hfs_warn("hfs_btree_extend: header node not found.\n");
return;
}
seen = 0;
new_mapnodes = 0;
for (;;) {
seen += bnode_rsize(bn, bn->ndNRecs) << 3;
if (seen >= total_nodes) {
break;
}
if (!bn->next) {
tmp = init_mapnode(bn, seen);
if (!tmp) {
hfs_warn("hfs_btree_extend: "
"can't build mapnode.\n");
hfs_bnode_relse(&head);
return;
}
++new_mapnodes;
}
bn = bn->next;
}
hfs_bnode_relse(&head);
tree->bthNNodes = total_nodes;
tree->bthFree += (new_nodes - new_mapnodes);
tree->dirt = 1;
/* write the backup MDB, not returning until it is written */
hfs_mdb_commit(mdb, 1);
return;
}
/*
* hfs_bnode_free()
*
* Remove a node from the cache and mark it free in the bitmap.
*/
int hfs_bnode_free(struct hfs_bnode_ref *bnr)
{
hfs_u32 node = bnr->bn->node;
struct hfs_btree *tree = bnr->bn->tree;
if (bnr->bn->count != 1) {
hfs_warn("hfs_bnode_free: count != 1.\n");
return -EIO;
}
hfs_bnode_relse(bnr);
hfs_bnode_bitop(tree, node, 0);
return 0;
}
|