summaryrefslogtreecommitdiffstats
path: root/include/asm-arm/proc-armv/pgtable.h
blob: fd93bdd29416ee08d17295104b890b5369fd3840 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
 * linux/include/asm-arm/proc-armv/pgtable.h
 *
 * Copyright (C) 1995, 1996, 1997 Russell King
 *
 * 12-Jan-1997	RMK	Altered flushing routines to use function pointers
 *			now possible to combine ARM6, ARM7 and StrongARM versions.
 * 17-Apr-1999	RMK	Now pass an area size to clean_cache_area and
 *			flush_icache_area.
 */
#ifndef __ASM_PROC_PGTABLE_H
#define __ASM_PROC_PGTABLE_H

#include <asm/arch/memory.h>		/* For TASK_SIZE */

#define LIBRARY_TEXT_START 0x0c000000

/*
 * Cache flushing...
 */
#define flush_cache_all()						\
	processor.u.armv3v4._flush_cache_all()

#define flush_cache_mm(_mm)						\
	do {								\
		if ((_mm) == current->mm)				\
			processor.u.armv3v4._flush_cache_all();		\
	} while (0)

#define flush_cache_range(_mm,_start,_end)				\
	do {								\
		if ((_mm) == current->mm)				\
			processor.u.armv3v4._flush_cache_area		\
				((_start), (_end), 1);			\
	} while (0)

#define flush_cache_page(_vma,_vmaddr)					\
	do {								\
		if ((_vma)->vm_mm == current->mm)			\
			processor.u.armv3v4._flush_cache_area		\
				((_vmaddr), (_vmaddr) + PAGE_SIZE,	\
				 ((_vma)->vm_flags & VM_EXEC) ? 1 : 0);	\
	} while (0)

#define clean_cache_range(_start,_end)					\
	do {								\
		unsigned long _s, _sz;					\
		_s = (unsigned long)_start;				\
		_sz = (unsigned long)_end - _s;				\
		processor.u.armv3v4._clean_cache_area(_s, _sz);		\
	} while (0)

#define clean_cache_area(_start,_size)					\
	do {								\
		unsigned long _s;					\
		_s = (unsigned long)_start;				\
		processor.u.armv3v4._clean_cache_area(_s, _size);	\
	} while (0)

#define flush_icache_range(_start,_end)					\
	processor.u.armv3v4._flush_icache_area((_start), (_end) - (_start))

/*
 * We don't have a MEMC chip...
 */
#define update_memc_all()		do { } while (0)
#define update_memc_task(tsk)		do { } while (0)
#define update_memc_mm(mm)		do { } while (0)
#define update_memc_addr(mm,addr,pte)	do { } while (0)

/*
 * This flushes back any buffered write data.  We have to clean and flush the entries
 * in the cache for this page.  Is it necessary to invalidate the I-cache?
 */
#define flush_page_to_ram(_page)					\
	processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);

/*
 * TLB flushing:
 *
 *  - flush_tlb() flushes the current mm struct TLBs
 *  - flush_tlb_all() flushes all processes TLBs
 *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
 *  - flush_tlb_page(vma, vmaddr) flushes one page
 *  - flush_tlb_range(mm, start, end) flushes a range of pages
 *
 * GCC uses conditional instructions, and expects the assembler code to do so as well.
 *
 * We drain the write buffer in here to ensure that the page tables in ram
 * are really up to date.  It is more efficient to do this here...
 */
#define flush_tlb() flush_tlb_all()

#define flush_tlb_all()								\
	processor.u.armv3v4._flush_tlb_all()

#define flush_tlb_mm(_mm)							\
	do {									\
		if ((_mm) == current->mm)					\
			processor.u.armv3v4._flush_tlb_all();			\
	} while (0)

#define flush_tlb_range(_mm,_start,_end)					\
	do {									\
		if ((_mm) == current->mm)					\
			processor.u.armv3v4._flush_tlb_area			\
				((_start), (_end), 1);				\
	} while (0)

#define flush_tlb_page(_vma,_vmaddr)						\
	do {									\
		if ((_vma)->vm_mm == current->mm)				\
			processor.u.armv3v4._flush_tlb_area			\
				((_vmaddr), (_vmaddr) + PAGE_SIZE,		\
				 ((_vma)->vm_flags & VM_EXEC) ? 1 : 0);		\
	} while (0)

/*
 * PMD_SHIFT determines the size of the area a second-level page table can map
 */
#define PMD_SHIFT       20
#define PMD_SIZE        (1UL << PMD_SHIFT)
#define PMD_MASK        (~(PMD_SIZE-1))

/*
 * PGDIR_SHIFT determines what a third-level page table entry can map
 */
#define PGDIR_SHIFT     20
#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
#define PGDIR_MASK      (~(PGDIR_SIZE-1))

/*
 * entries per page directory level: the sa110 is two-level, so
 * we don't really have any PMD directory physically.
 */
#define PTRS_PER_PTE    256
#define PTRS_PER_PMD    1
#define PTRS_PER_PGD    4096
#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)


/* Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
#define VMALLOC_OFFSET	  (8*1024*1024)
#define VMALLOC_START	  (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END       (PAGE_OFFSET + 0x10000000)


/*
 * Domains
 */
#define DOMAIN_USER	0
#define DOMAIN_KERNEL	1
#define DOMAIN_TABLE	1
#define DOMAIN_IO	2



#undef TEST_VERIFY_AREA

/*
 * The sa110 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
extern __inline__ void update_mmu_cache(struct vm_area_struct * vma,
	unsigned long address, pte_t pte)
{
}


/*
 * BAD_PAGETABLE is used when we need a bogus page-table, while
 * BAD_PAGE is used for a bogus page.
 *
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
extern unsigned long *empty_zero_page;

#define BAD_PAGETABLE	__bad_pagetable()
#define BAD_PAGE	__bad_page()
#define ZERO_PAGE	((unsigned long) empty_zero_page)

/* number of bits that fit into a memory pointer */
#define BYTES_PER_PTR	(sizeof(unsigned long))
#define BITS_PER_PTR	(8*BYTES_PER_PTR)

/* to align the pointer to a pointer address */
#define PTR_MASK	(~(sizeof(void*)-1))

/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
#define SIZEOF_PTR_LOG2	2

/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)

/* to set the page-dir
 * Note that we need to flush the cache and TLBs
 * if we are affecting the current task.
 */
#define SET_PAGE_DIR(tsk,pgdir)					\
do {								\
	tsk->tss.memmap = __virt_to_phys((unsigned long)pgdir);	\
	if ((tsk) == current) {					\
		flush_cache_all();				\
		__asm__ __volatile__(				\
		"mcr%?	p15, 0, %0, c2, c0, 0\n"		\
		: : "r" (tsk->tss.memmap));			\
		flush_tlb_all();				\
	}							\
} while (0)


/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
#define pgd_none(pgd)		(0)
#define pgd_bad(pgd)		(0)
#define pgd_present(pgd)	(1)
#define pgd_clear(pgdp)

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/* to find an entry in a page-table-directory */
extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
	return mm->pgd + (address >> PGDIR_SHIFT);
}

extern unsigned long get_page_2k(int priority);
extern void free_page_2k(unsigned long page);

/*
 * Allocate and free page tables. The xxx_kernel() versions are
 * used to allocate a kernel page table - this turns on ASN bits
 * if any.
 */

#ifndef __SMP__
extern struct pgtable_cache_struct {
	unsigned long *pgd_cache;
	unsigned long *pte_cache;
	unsigned long pgtable_cache_sz;
} quicklists;

#define pgd_quicklist (quicklists.pgd_cache)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist (quicklists.pte_cache)
#define pgtable_cache_size (quicklists.pgtable_cache_sz)
#else
#error Pgtable caches have to be per-CPU, so that no locking is needed.
#endif

extern pgd_t *get_pgd_slow(void);

extern __inline__ pgd_t *get_pgd_fast(void)
{
	unsigned long *ret;

	if((ret = pgd_quicklist) != NULL) {
		pgd_quicklist = (unsigned long *)(*ret);
		ret[0] = ret[1];
		clean_cache_area(ret, 4);
		pgtable_cache_size--;
	} else
		ret = (unsigned long *)get_pgd_slow();
	return (pgd_t *)ret;
}

extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
	*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
	pgd_quicklist = (unsigned long *) pgd;
	pgtable_cache_size++;
}

extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
	free_pages((unsigned long) pgd, 2);
}

#define pgd_free(pgd)		free_pgd_fast(pgd)
#define pgd_alloc()		get_pgd_fast()

extern __inline__ void set_pgdir(unsigned long address, pgd_t entry)
{
	struct task_struct * p;
	pgd_t *pgd;

	read_lock(&tasklist_lock);
	for_each_task(p) {
		if (!p->mm)
			continue;
		*pgd_offset(p->mm,address) = entry;
	}
	read_unlock(&tasklist_lock);
	for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
		pgd[address >> PGDIR_SHIFT] = entry;
}

extern pgd_t swapper_pg_dir[PTRS_PER_PGD];

/****************
* PMD functions *
****************/

/* PMD types (actually level 1 descriptor) */
#define PMD_TYPE_MASK		0x0003
#define PMD_TYPE_FAULT		0x0000
#define PMD_TYPE_TABLE		0x0001
#define PMD_TYPE_SECT		0x0002
#define PMD_UPDATABLE		0x0010
#define PMD_SECT_CACHEABLE	0x0008
#define PMD_SECT_BUFFERABLE	0x0004
#define PMD_SECT_AP_WRITE	0x0400
#define PMD_SECT_AP_READ	0x0800
#define PMD_DOMAIN(x)		((x) << 5)

#define _PAGE_USER_TABLE	(PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_USER))
#define _PAGE_KERNEL_TABLE	(PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_KERNEL))

#define pmd_none(pmd)		(!pmd_val(pmd))
#define pmd_clear(pmdp)		set_pmd(pmdp, __pmd(0))
#define pmd_bad(pmd)		(pmd_val(pmd) & 2)
#define mk_user_pmd(ptep)	__mk_pmd(ptep, _PAGE_USER_TABLE)
#define mk_kernel_pmd(ptep)	__mk_pmd(ptep, _PAGE_KERNEL_TABLE)
#define set_pmd(pmdp,pmd)	processor.u.armv3v4._set_pmd(pmdp,pmd)

/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, address) ((pmd_t *)(dir))

extern __inline__ int pmd_present(pmd_t pmd)
{
	return ((pmd_val(pmd) + 1) & 2);
}

/* We don't use pmd cache, so this is a dummy routine */
extern __inline__ pmd_t *get_pmd_fast(void)
{
	return (pmd_t *)0;
}

extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}

extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}

extern void __bad_pmd(pmd_t *pmd);
extern void __bad_pmd_kernel(pmd_t *pmd);

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern __inline__ void pmd_free(pmd_t *pmd)
{
}

extern __inline__ pmd_t *pmd_alloc(pgd_t *pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

#define pmd_free_kernel		pmd_free
#define pmd_alloc_kernel	pmd_alloc

extern __inline__ pmd_t __mk_pmd(pte_t *ptep, unsigned long prot)
{
	unsigned long pte_ptr = (unsigned long)ptep;
	pmd_t pmd;

	pte_ptr -= PTRS_PER_PTE * BYTES_PER_PTR;

	/*
	 * The pmd must be loaded with the physical
	 * address of the PTE table
	 */
	pmd_val(pmd) = __virt_to_phys(pte_ptr) | prot;

	return pmd;
}

extern __inline__ unsigned long pmd_page(pmd_t pmd)
{
	unsigned long ptr;

	ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * BYTES_PER_PTR - 1);

	ptr += PTRS_PER_PTE * BYTES_PER_PTR;

	return __phys_to_virt(ptr);
}


/****************
* PTE functions *
****************/

/* PTE types (actially level 2 descriptor) */
#define PTE_TYPE_MASK		0x0003
#define PTE_TYPE_FAULT		0x0000
#define PTE_TYPE_LARGE		0x0001
#define PTE_TYPE_SMALL		0x0002
#define PTE_AP_READ		0x0aa0
#define PTE_AP_WRITE		0x0550
#define PTE_CACHEABLE		0x0008
#define PTE_BUFFERABLE		0x0004

#define pte_none(pte)		(!pte_val(pte))
#define pte_clear(ptep)		set_pte(ptep, __pte(0))

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{
	pte_t pte;
	pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);
	return pte;
}

/* This takes a physical page address that is used by the remapping functions */
extern __inline__ pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
	pte_t pte;
	pte_val(pte) = physpage + pgprot_val(pgprot);
	return pte;
}

#define set_pte(ptep, pte)	processor.u.armv3v4._set_pte(ptep,pte)

extern __inline__ unsigned long pte_page(pte_t pte)
{
	return __phys_to_virt(pte_val(pte) & PAGE_MASK);
}

extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);

extern __inline__ pte_t *get_pte_fast(void)
{
	unsigned long *ret;

	if((ret = (unsigned long *)pte_quicklist) != NULL) {
		pte_quicklist = (unsigned long *)(*ret);
		ret[0] = ret[1];
		clean_cache_area(ret, 4);
		pgtable_cache_size--;
	}
	return (pte_t *)ret;
}

extern __inline__ void free_pte_fast(pte_t *pte)
{
	*(unsigned long *)pte = (unsigned long) pte_quicklist;
	pte_quicklist = (unsigned long *) pte;
	pgtable_cache_size++;
}

extern __inline__ void free_pte_slow(pte_t *pte)
{
	free_page_2k((unsigned long)(pte - PTRS_PER_PTE));
}

#define pte_free_kernel(pte)	free_pte_fast(pte)
#define pte_free(pte)		free_pte_fast(pte)

/*###############################################################################
 * New PageTableEntry stuff...
 */
/* We now keep two sets of ptes - the physical and the linux version.
 * This gives us many advantages, and allows us greater flexibility.
 *
 * The Linux pte's contain:
 *  bit   meaning
 *   0    page present
 *   1    young
 *   2    bufferable	- matches physical pte
 *   3    cacheable	- matches physical pte
 *   4    user
 *   5    write
 *   6    execute
 *   7    dirty
 *  8-11  unused
 *  12-31 virtual page address
 *
 * These are stored at the pte pointer; the physical PTE is at -1024bytes
 */
#define L_PTE_PRESENT		(1 << 0)
#define L_PTE_YOUNG		(1 << 1)
#define L_PTE_BUFFERABLE	(1 << 2)
#define L_PTE_CACHEABLE		(1 << 3)
#define L_PTE_USER		(1 << 4)
#define L_PTE_WRITE		(1 << 5)
#define L_PTE_EXEC		(1 << 6)
#define L_PTE_DIRTY		(1 << 7)

/*
 * The following macros handle the cache and bufferable bits...
 */
#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
#define _L_PTE_READ	L_PTE_USER | L_PTE_CACHEABLE
#define _L_PTE_EXEC	_L_PTE_READ | L_PTE_EXEC

#define PAGE_NONE       __pgprot(_L_PTE_DEFAULT)
#define PAGE_COPY       __pgprot(_L_PTE_DEFAULT | _L_PTE_READ  | L_PTE_BUFFERABLE)
#define PAGE_SHARED     __pgprot(_L_PTE_DEFAULT | _L_PTE_READ  | L_PTE_BUFFERABLE | L_PTE_WRITE)
#define PAGE_READONLY   __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
#define PAGE_KERNEL     __pgprot(_L_PTE_DEFAULT | L_PTE_CACHEABLE | L_PTE_BUFFERABLE | L_PTE_DIRTY | L_PTE_WRITE)

#define _PAGE_CHG_MASK		(PAGE_MASK | L_PTE_DIRTY | L_PTE_YOUNG)

/*
 * The table below defines the page protection levels that we insert into our
 * Linux page table version.  These get translated into the best that the
 * architecture can perform.  Note that on most ARM hardware:
 *  1) We cannot do execute protection
 *  2) If we could do execute protection, then read is implied
 *  3) write implies read permissions
 */
#define __P000  PAGE_NONE
#define __P001  PAGE_READONLY
#define __P010  PAGE_COPY
#define __P011  PAGE_COPY
#define __P100  PAGE_READONLY
#define __P101  PAGE_READONLY
#define __P110  PAGE_COPY
#define __P111  PAGE_COPY

#define __S000  PAGE_NONE
#define __S001  PAGE_READONLY
#define __S010  PAGE_SHARED
#define __S011  PAGE_SHARED
#define __S100  PAGE_READONLY
#define __S101  PAGE_READONLY
#define __S110  PAGE_SHARED
#define __S111  PAGE_SHARED



#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
#define pte_read(pte)			(pte_val(pte) & L_PTE_USER)
#define pte_write(pte)			(pte_val(pte) & L_PTE_WRITE)
#define pte_exec(pte)			(pte_val(pte) & L_PTE_EXEC)
#define pte_dirty(pte)			(pte_val(pte) & L_PTE_DIRTY)
#define pte_young(pte)			(pte_val(pte) & L_PTE_YOUNG)

#define PTE_BIT_FUNC(fn,op)			\
extern inline pte_t fn##(pte_t pte) { pte_val(pte) op##; return pte; }

//PTE_BIT_FUNC(pte_rdprotect, &= ~L_PTE_USER);
PTE_BIT_FUNC(pte_wrprotect, &= ~L_PTE_WRITE);
PTE_BIT_FUNC(pte_exprotect, &= ~L_PTE_EXEC);
PTE_BIT_FUNC(pte_mkclean,   &= ~L_PTE_DIRTY);
PTE_BIT_FUNC(pte_mkold,     &= ~L_PTE_YOUNG);
//PTE_BIT_FUNC(pte_mkread,    |= L_PTE_USER);
PTE_BIT_FUNC(pte_mkwrite,   |= L_PTE_WRITE);
PTE_BIT_FUNC(pte_mkexec,    |= L_PTE_EXEC);
PTE_BIT_FUNC(pte_mkdirty,   |= L_PTE_DIRTY);
PTE_BIT_FUNC(pte_mkyoung,   |= L_PTE_YOUNG);
PTE_BIT_FUNC(pte_nocache,   &= ~L_PTE_CACHEABLE);

extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
	return pte;
}

/* Find an entry in the third-level page table.. */
extern __inline__ pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
	return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}

extern __inline__ pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	if (pmd_none(*pmd)) {
		pte_t *page = (pte_t *) get_pte_fast();

		if (!page)
			return get_pte_kernel_slow(pmd, address);
		set_pmd(pmd, mk_kernel_pmd(page));
		return page + address;
	}
	if (pmd_bad(*pmd)) {
		__bad_pmd_kernel(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + address;
}

extern __inline__ pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);

	if (pmd_none(*pmd)) {
		pte_t *page = (pte_t *) get_pte_fast();

		if (!page)
			return get_pte_slow(pmd, address);
		set_pmd(pmd, mk_user_pmd(page));
		return page + address;
	}
	if (pmd_bad(*pmd)) {
		__bad_pmd(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + address;
}

#define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 9)
#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))

#endif /* __ASM_PROC_PAGE_H */