1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
#ifndef _ASM_IA64_PGTABLE_H
#define _ASM_IA64_PGTABLE_H
/*
* This file contains the functions and defines necessary to modify and use
* the IA-64 page table tree.
*
* This hopefully works with any (fixed) IA-64 page-size, as defined
* in <asm/page.h> (currently 8192).
*
* Copyright (C) 1998-2000 Hewlett-Packard Co
* Copyright (C) 1998-2000 David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <asm/mman.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/types.h>
#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
/*
* First, define the various bits in a PTE. Note that the PTE format
* matches the VHPT short format, the firt doubleword of the VHPD long
* format, and the first doubleword of the TLB insertion format.
*/
#define _PAGE_P (1 << 0) /* page present bit */
#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
#define _PAGE_MA_MASK (0x7 << 2)
#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
#define _PAGE_PL_MASK (3 << 7)
#define _PAGE_AR_R (0 << 9) /* read only */
#define _PAGE_AR_RX (1 << 9) /* read & execute */
#define _PAGE_AR_RW (2 << 9) /* read & write */
#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
#define _PAGE_AR_MASK (7 << 9)
#define _PAGE_AR_SHIFT 9
#define _PAGE_A (1 << 5) /* page accessed bit */
#define _PAGE_D (1 << 6) /* page dirty bit */
#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
#define _PAGE_PROTNONE (__IA64_UL(1) << 63)
#define _PFN_MASK _PAGE_PPN_MASK
#define _PAGE_CHG_MASK (_PFN_MASK | _PAGE_A | _PAGE_D)
#define _PAGE_SIZE_4K 12
#define _PAGE_SIZE_8K 13
#define _PAGE_SIZE_16K 14
#define _PAGE_SIZE_64K 16
#define _PAGE_SIZE_256K 18
#define _PAGE_SIZE_1M 20
#define _PAGE_SIZE_4M 22
#define _PAGE_SIZE_16M 24
#define _PAGE_SIZE_64M 26
#define _PAGE_SIZE_256M 28
#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
/*
* Definitions for first level:
*
* PGDIR_SHIFT determines what a first-level page table entry can map.
*/
#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PTRS_PER_PGD (__IA64_UL(1) << (PAGE_SHIFT-3))
#define USER_PTRS_PER_PGD PTRS_PER_PGD
#define FIRST_USER_PGD_NR 0
/*
* Definitions for second level:
*
* PMD_SHIFT determines the size of the area a second-level page table
* can map.
*/
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
#define PMD_SIZE (__IA64_UL(1) << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PTRS_PER_PMD (__IA64_UL(1) << (PAGE_SHIFT-3))
/*
* Definitions for third level:
*/
#define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3))
/* Number of pointers that fit on a page: this will go away. */
#define PTRS_PER_PAGE (__IA64_UL(1) << (PAGE_SHIFT-3))
# ifndef __ASSEMBLY__
#include <asm/bitops.h>
#include <asm/mmu_context.h>
#include <asm/system.h>
/*
* All the normal masks have the "page accessed" bits on, as any time
* they are used, the page is accessed. They are cleared only by the
* page-out routines
*/
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
/*
* Next come the mappings that determine how mmap() protection bits
* (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
* _P version gets used for a private shared memory segment, the _S
* version gets used for a shared memory segment with MAP_SHARED on.
* In a private shared memory segment, we do a copy-on-write if a task
* attempts to write to the page.
*/
/* xwr */
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
#define __P011 PAGE_READONLY /* ditto */
#define __P100 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_X_RX)
#define __P101 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
#define __P110 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
#define __P111 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
#define __S011 PAGE_SHARED
#define __S100 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_X_RX)
#define __S101 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)
#define __S110 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RWX)
#define __S111 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RWX)
#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
/*
* Some definitions to translate between mem_map, PTEs, and page
* addresses:
*/
/*
* Given a pointer to an mem_map[] entry, return the kernel virtual
* address corresponding to that page.
*/
#define page_address(page) ((page)->virtual)
/*
* Now for some cache flushing routines. This is the kind of stuff
* that can be very expensive, so try to avoid them whenever possible.
*/
/* Caches aren't brain-dead on the ia-64. */
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, start, end) do { } while (0)
#define flush_cache_page(vma, vmaddr) do { } while (0)
#define flush_page_to_ram(page) do { } while (0)
#define flush_dcache_page(page) do { } while (0)
#define flush_icache_range(start, end) do { } while (0)
extern void ia64_flush_icache_page (unsigned long addr);
#define flush_icache_page(vma,pg) \
do { \
if ((vma)->vm_flags & PROT_EXEC) \
ia64_flush_icache_page((unsigned long) page_address(pg)); \
} while (0)
/* Quick test to see if ADDR is a (potentially) valid physical address. */
static __inline__ long
ia64_phys_addr_valid (unsigned long addr)
{
return (addr & (my_cpu_data.unimpl_pa_mask)) == 0;
}
/*
* kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
* memory. For the return value to be meaningful, ADDR must be >=
* PAGE_OFFSET. This operation can be relatively expensive (e.g.,
* require a hash-, or multi-level tree-lookup or something of that
* sort) but it guarantees to return TRUE only if accessing the page
* at that address does not cause an error. Note that there may be
* addresses for which kern_addr_valid() returns FALSE even though an
* access would not cause an error (e.g., this is typically true for
* memory mapped I/O regions.
*
* XXX Need to implement this for IA-64.
*/
#define kern_addr_valid(addr) (1)
/*
* Now come the defines and routines to manage and access the three-level
* page table.
*/
/*
* On some architectures, special things need to be done when setting
* the PTE in a page table. Nothing special needs to be on ia-64.
*/
#define set_pte(ptep, pteval) (*(ptep) = (pteval))
#define VMALLOC_START (0xa000000000000000+2*PAGE_SIZE)
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END 0xbfffffffffffffff
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t ia64_bad_page (void);
extern pmd_t *ia64_bad_pagetable (void);
#define BAD_PAGETABLE ia64_bad_pagetable()
#define BAD_PAGE ia64_bad_page()
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,pgprot) \
({ \
pte_t __pte; \
\
pte_val(__pte) = ((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot); \
__pte; \
})
/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
#define pte_modify(_pte, newprot) \
(__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
#define page_pte_prot(page,prot) mk_pte(page, prot)
#define page_pte(page) page_pte_prot(page, __pgprot(0))
#define pte_none(pte) (!pte_val(pte))
#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
#define pte_clear(pte) (pte_val(*(pte)) = 0UL)
/* pte_page() returns the "struct page *" corresponding to the PTE: */
#define pte_page(pte) (mem_map + (unsigned long) ((pte_val(pte) & _PFN_MASK) >> PAGE_SHIFT))
#define pmd_set(pmdp, ptep) (pmd_val(*(pmdp)) = __pa(ptep))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
#define pmd_present(pmd) (pmd_val(pmd) != 0UL)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
#define pmd_page(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
#define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = __pa(pmdp))
#define pgd_none(pgd) (!pgd_val(pgd))
#define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd)))
#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
#define pgd_page(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
/*
* The following have defined behavior only work if pte_present() is true.
*/
#define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6)
#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) < 4)
#define pte_dirty(pte) (pte_val(pte) & _PAGE_D)
#define pte_young(pte) (pte_val(pte) & _PAGE_A)
/*
* Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the
* 2nd bit in the access rights:
*/
#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
/*
* Macro to make mark a page protection value as "uncacheable". Note
* that "protection" is really a misnomer here as the protection value
* contains the memory attribute bits, dirty bits, and various other
* bits as well.
*/
#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
/*
* Macro to make mark a page protection value as "write-combining".
* Note that "protection" is really a misnomer here as the protection
* value contains the memory attribute bits, dirty bits, and various
* other bits as well. Accesses through a write-combining translation
* works bypasses the caches, but does allow for consecutive writes to
* be combined into single (but larger) write transactions.
*/
#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
/*
* Return the region index for virtual address ADDRESS.
*/
static __inline__ unsigned long
rgn_index (unsigned long address)
{
ia64_va a;
a.l = address;
return a.f.reg;
}
/*
* Return the region offset for virtual address ADDRESS.
*/
static __inline__ unsigned long
rgn_offset (unsigned long address)
{
ia64_va a;
a.l = address;
return a.f.off;
}
#define RGN_SIZE (1UL << 61)
#define RGN_KERNEL 7
static __inline__ unsigned long
pgd_index (unsigned long address)
{
unsigned long region = address >> 61;
unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
return (region << (PAGE_SHIFT - 6)) | l1index;
}
/* The offset in the 1-level directory is given by the 3 region bits
(61..63) and the seven level-1 bits (33-39). */
static __inline__ pgd_t*
pgd_offset (struct mm_struct *mm, unsigned long address)
{
return mm->pgd + pgd_index(address);
}
/* In the kernel's mapped region we have a full 43 bit space available and completely
ignore the region number (since we know its in region number 5). */
#define pgd_offset_k(addr) \
(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir,addr) \
((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
/* Find an entry in the third-level page table.. */
#define pte_offset(dir,addr) \
((pte_t *) pmd_page(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern void paging_init (void);
/*
* IA-64 doesn't have any external MMU info: the page tables contain
* all the necessary information. However, we can use this macro
* to pre-install (override) a PTE that we know is needed anyhow.
*
* Asit says that on Itanium, it is generally faster to let the VHPT
* walker pick up a newly installed PTE (and VHPT misses should be
* extremely rare compared to normal misses). Also, since
* pre-installing the PTE has the problem that we may evict another
* TLB entry needlessly because we don't know for sure whether we need
* to update the iTLB or dTLB, I tend to prefer this solution, too.
* Also, this avoids nasty issues with forward progress (what if the
* newly installed PTE gets replaced before we return to the previous
* execution context?).
*
*/
#if 1
# define update_mmu_cache(vma,address,pte)
#else
# define update_mmu_cache(vma,address,pte) \
do { \
/* \
* XXX fix me!! \
* \
* It's not clear this is a win. We may end up pollute the \
* dtlb with itlb entries and vice versa (e.g., consider stack \
* pages that are normally marked executable). It would be \
* better to insert the TLB entry for the TLB cache that we \
* know needs the new entry. However, the update_mmu_cache() \
* arguments don't tell us whether we got here through a data \
* access or through an instruction fetch. Talk to Linus to \
* fix this. \
* \
* If you re-enable this code, you must disable the ptc code in \
* Entry 20 of the ivt. \
*/ \
unsigned long flags; \
\
ia64_clear_ic(flags); \
ia64_itc((vma->vm_flags & PROT_EXEC) ? 0x3 : 0x2, address, pte_val(pte), PAGE_SHIFT); \
__restore_flags(flags); \
} while (0)
#endif
#define SWP_TYPE(entry) (((entry).val >> 1) & 0xff)
#define SWP_OFFSET(entry) ((entry).val >> 9)
#define SWP_ENTRY(type,offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 9) })
#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define swp_entry_to_pte(x) ((pte_t) { (x).val })
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define io_remap_page_range remap_page_range /* XXX is this right? */
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#include <asm-generic/pgtable.h>
# endif /* !__ASSEMBLY__ */
#endif /* _ASM_IA64_PGTABLE_H */
|