summaryrefslogtreecommitdiffstats
path: root/include/asm-ia64/sn/sn1/hubpi.h
blob: 4b81ca32be43850d03993595726dca25212c11ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
/* $Id$
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1992 - 1997, 2000 Silicon Graphics, Inc.
 * Copyright (C) 2000 by Colin Ngam
 */
#ifndef _ASM_SN_SN1_HUBPI_H
#define _ASM_SN_SN1_HUBPI_H

/************************************************************************
 *                                                                      *
 *      WARNING!!!  WARNING!!!  WARNING!!!  WARNING!!!  WARNING!!!      *
 *                                                                      *
 * This file is created by an automated script. Any (minimal) changes   *
 * made manually to this  file should be made with care.                *
 *                                                                      *
 *               MAKE ALL ADDITIONS TO THE END OF THIS FILE             *
 *                                                                      *
 ************************************************************************/


#define    PI_CPU_PROTECT            0x00000000    /* CPU Protection         */



#define    PI_PROT_OVRRD             0x00000008    /*
                                                    * Clear CPU
                                                    * Protection bit in 
                                                    * CPU_PROTECT
                                                    */



#define    PI_IO_PROTECT             0x00000010    /*
                                                    * Interrupt Pending
                                                    * Protection for IO
                                                    * access
                                                    */



#define    PI_REGION_PRESENT         0x00000018    /* Region present         */



#define    PI_CPU_NUM                0x00000020    /* CPU Number ID          */



#define    PI_CALIAS_SIZE            0x00000028    /* Cached Alias Size      */



#define    PI_MAX_CRB_TIMEOUT        0x00000030    /*
                                                    * Maximum Timeout for
                                                    * CRB
                                                    */



#define    PI_CRB_SFACTOR            0x00000038    /*
                                                    * Scale Factor for
                                                    * CRB Timeout
                                                    */



#define    PI_CPU_PRESENT_A          0x00000040    /*
                                                    * CPU Present for
                                                    * CPU_A
                                                    */



#define    PI_CPU_PRESENT_B          0x00000048    /*
                                                    * CPU Present for
                                                    * CPU_B
                                                    */



#define    PI_CPU_ENABLE_A           0x00000050    /*
                                                    * CPU Enable for
                                                    * CPU_A
                                                    */



#define    PI_CPU_ENABLE_B           0x00000058    /*
                                                    * CPU Enable for
                                                    * CPU_B
                                                    */



#define    PI_REPLY_LEVEL            0x00010060    /*
                                                    * Reply FIFO Priority
                                                    * Control
                                                    */



#define    PI_GFX_CREDIT_MODE        0x00020068    /*
                                                    * Graphics Credit
                                                    * Mode
                                                    */



#define    PI_NMI_A                  0x00000070    /*
                                                    * Non-maskable
                                                    * Interrupt to CPU A
                                                    */



#define    PI_NMI_B                  0x00000078    /*
                                                    * Non-maskable
                                                    * Interrupt to CPU B
                                                    */



#define    PI_INT_PEND_MOD           0x00000090    /*
                                                    * Interrupt Pending
                                                    * Modify
                                                    */



#define    PI_INT_PEND0              0x00000098    /* Interrupt Pending 0    */



#define    PI_INT_PEND1              0x000000A0    /* Interrupt Pending 1    */



#define    PI_INT_MASK0_A            0x000000A8    /*
                                                    * Interrupt Mask 0
                                                    * for CPU A
                                                    */



#define    PI_INT_MASK1_A            0x000000B0    /*
                                                    * Interrupt Mask 1
                                                    * for CPU A
                                                    */



#define    PI_INT_MASK0_B            0x000000B8    /*
                                                    * Interrupt Mask 0
                                                    * for CPU B
                                                    */



#define    PI_INT_MASK1_B            0x000000C0    /*
                                                    * Interrupt Mask 1
                                                    * for CPU B
                                                    */



#define    PI_CC_PEND_SET_A          0x000000C8    /*
                                                    * CC Interrupt
                                                    * Pending for CPU A
                                                    */



#define    PI_CC_PEND_SET_B          0x000000D0    /*
                                                    * CC Interrupt
                                                    * Pending for CPU B
                                                    */



#define    PI_CC_PEND_CLR_A          0x000000D8    /*
                                                    * CPU to CPU
                                                    * Interrupt Pending
                                                    * Clear for CPU A
                                                    */



#define    PI_CC_PEND_CLR_B          0x000000E0    /*
                                                    * CPU to CPU
                                                    * Interrupt Pending
                                                    * Clear for CPU B
                                                    */



#define    PI_CC_MASK                0x000000E8    /*
                                                    * Mask of both
                                                    * CC_PENDs
                                                    */



#define    PI_INT_PEND1_REMAP        0x000000F0    /*
                                                    * Remap Interrupt
                                                    * Pending
                                                    */



#define    PI_RT_COUNTER             0x00030100    /* Real Time Counter      */



#define    PI_RT_COMPARE_A           0x00000108    /* Real Time Compare A    */



#define    PI_RT_COMPARE_B           0x00000110    /* Real Time Compare B    */



#define    PI_PROFILE_COMPARE        0x00000118    /* Profiling Compare      */



#define    PI_RT_INT_PEND_A          0x00000120    /*
                                                    * RT interrupt
                                                    * pending
                                                    */



#define    PI_RT_INT_PEND_B          0x00000128    /*
                                                    * RT interrupt
                                                    * pending
                                                    */



#define    PI_PROF_INT_PEND_A        0x00000130    /*
                                                    * Profiling interrupt
                                                    * pending
                                                    */



#define    PI_PROF_INT_PEND_B        0x00000138    /*
                                                    * Profiling interrupt
                                                    * pending
                                                    */



#define    PI_RT_INT_EN_A            0x00000140    /* RT Interrupt Enable    */



#define    PI_RT_INT_EN_B            0x00000148    /* RT Interrupt Enable    */



#define    PI_PROF_INT_EN_A          0x00000150    /*
                                                    * Profiling Interrupt
                                                    * Enable
                                                    */



#define    PI_PROF_INT_EN_B          0x00000158    /*
                                                    * Profiling Interrupt
                                                    * Enable
                                                    */



#define    PI_DEBUG_SEL              0x00000160    /* PI Debug Select        */



#define    PI_INT_PEND_MOD_ALIAS     0x00000180    /*
                                                    * Interrupt Pending
                                                    * Modify
                                                    */



#define    PI_PERF_CNTL_A            0x00040200    /*
                                                    * Performance Counter
                                                    * Control A
                                                    */



#define    PI_PERF_CNTR0_A           0x00040208    /*
                                                    * Performance Counter
                                                    * 0 A
                                                    */



#define    PI_PERF_CNTR1_A           0x00040210    /*
                                                    * Performance Counter
                                                    * 1 A
                                                    */



#define    PI_PERF_CNTL_B            0x00050200    /*
                                                    * Performance Counter
                                                    * Control B
                                                    */



#define    PI_PERF_CNTR0_B           0x00050208    /*
                                                    * Performance Counter
                                                    * 0 B
                                                    */



#define    PI_PERF_CNTR1_B           0x00050210    /*
                                                    * Performance Counter
                                                    * 1 B
                                                    */



#define    PI_GFX_PAGE_A             0x00000300    /* Graphics Page          */



#define    PI_GFX_CREDIT_CNTR_A      0x00000308    /*
                                                    * Graphics Credit
                                                    * Counter
                                                    */



#define    PI_GFX_BIAS_A             0x00000310    /* TRex+ BIAS             */



#define    PI_GFX_INT_CNTR_A         0x00000318    /*
                                                    * Graphics Interrupt
                                                    * Counter
                                                    */



#define    PI_GFX_INT_CMP_A          0x00000320    /*
                                                    * Graphics Interrupt
                                                    * Compare
                                                    */



#define    PI_GFX_PAGE_B             0x00000328    /* Graphics Page          */



#define    PI_GFX_CREDIT_CNTR_B      0x00000330    /*
                                                    * Graphics Credit
                                                    * Counter
                                                    */



#define    PI_GFX_BIAS_B             0x00000338    /* TRex+ BIAS             */



#define    PI_GFX_INT_CNTR_B         0x00000340    /*
                                                    * Graphics Interrupt
                                                    * Counter
                                                    */



#define    PI_GFX_INT_CMP_B          0x00000348    /*
                                                    * Graphics Interrupt
                                                    * Compare
                                                    */



#define    PI_ERR_INT_PEND_WR        0x000003F8    /*
                                                    * Error Interrupt
                                                    * Pending (Writable)
                                                    */



#define    PI_ERR_INT_PEND           0x00000400    /*
                                                    * Error Interrupt
                                                    * Pending
                                                    */



#define    PI_ERR_INT_MASK_A         0x00000408    /*
                                                    * Error Interrupt
                                                    * Mask CPU_A
                                                    */



#define    PI_ERR_INT_MASK_B         0x00000410    /*
                                                    * Error Interrupt
                                                    * Mask CPU_B
                                                    */



#define    PI_ERR_STACK_ADDR_A       0x00000418    /*
                                                    * Error Stack Address
                                                    * Pointer
                                                    */



#define    PI_ERR_STACK_ADDR_B       0x00000420    /*
                                                    * Error Stack Address
                                                    * Pointer
                                                    */



#define    PI_ERR_STACK_SIZE         0x00000428    /* Error Stack Size       */



#define    PI_ERR_STATUS0_A          0x00000430    /* Error Status 0         */



#define    PI_ERR_STATUS0_A_CLR      0x00000438    /* Error Status 0         */



#define    PI_ERR_STATUS1_A          0x00000440    /* Error Status 1         */



#define    PI_ERR_STATUS1_A_CLR      0x00000448    /* Error Status 1         */



#define    PI_ERR_STATUS0_B          0x00000450    /* Error Status 0         */



#define    PI_ERR_STATUS0_B_CLR      0x00000458    /* Error Status 0         */



#define    PI_ERR_STATUS1_B          0x00000460    /* Error Status 1         */



#define    PI_ERR_STATUS1_B_CLR      0x00000468    /* Error Status 1         */



#define    PI_SPOOL_CMP_A            0x00000470    /* Spool Compare          */



#define    PI_SPOOL_CMP_B            0x00000478    /* Spool Compare          */



#define    PI_CRB_TIMEOUT_A          0x00000480    /*
                                                    * CRB entries which
                                                    * have timed out but
                                                    * are still valid
                                                    */



#define    PI_CRB_TIMEOUT_B          0x00000488    /*
                                                    * CRB entries which
                                                    * have timed out but
                                                    * are still valid
                                                    */



#define    PI_SYSAD_ERRCHK_EN        0x00000490    /*
                                                    * enables
                                                    * sysad/cmd/state
                                                    * error checking
                                                    */



#define    PI_FORCE_BAD_CHECK_BIT_A  0x00000498    /*
                                                    * force SysAD Check
                                                    * Bit error
                                                    */



#define    PI_FORCE_BAD_CHECK_BIT_B  0x000004A0    /*
                                                    * force SysAD Check
                                                    * Bit error
                                                    */



#define    PI_NACK_CNT_A             0x000004A8    /*
                                                    * consecutive NACK
                                                    * counter
                                                    */



#define    PI_NACK_CNT_B             0x000004B0    /*
                                                    * consecutive NACK
                                                    * counter
                                                    */



#define    PI_NACK_CMP               0x000004B8    /* NACK count compare     */



#define    PI_SPOOL_MASK             0x000004C0    /* Spool error mask       */



#define    PI_SPURIOUS_HDR_0         0x000004C8    /* Spurious Error 0       */



#define    PI_SPURIOUS_HDR_1         0x000004D0    /* Spurious Error 1       */



#define    PI_ERR_INJECT             0x000004D8    /*
                                                    * SysAD bus error
                                                    * injection
                                                    */





#ifdef _LANGUAGE_C

/************************************************************************
 *                                                                      *
 * Description:  This read/write register determines on a               *
 * bit-per-region basis whether incoming CPU-initiated PIO Read and     *
 * Write to local PI registers are allowed. If access is allowed, the   *
 * PI's response to a partial read is a PRPLY message, and the          *
 * response to a partial write is a PACK message. If access is not      *
 * allowed, the PI's response to a partial read is a PRERR message,     *
 * and the response to a partial write is a PWERR message.              *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




typedef union pi_cpu_protect_u {
	bdrkreg_t	pi_cpu_protect_regval;
	struct  {
		bdrkreg_t	cp_cpu_protect            :	64;
	} pi_cpu_protect_fld_s;
} pi_cpu_protect_u_t;




/************************************************************************
 *                                                                      *
 *  A write with a special data pattern allows any CPU to set its       *
 * region's bit in CPU_PROTECT. This register has data pattern          *
 * protection.                                                          *
 *                                                                      *
 ************************************************************************/




typedef union pi_prot_ovrrd_u {
	bdrkreg_t	pi_prot_ovrrd_regval;
	struct  {
		bdrkreg_t	po_prot_ovrrd             :	64;
	} pi_prot_ovrrd_fld_s;
} pi_prot_ovrrd_u_t;




/************************************************************************
 *                                                                      *
 * Description:  This read/write register determines on a               *
 * bit-per-region basis whether incoming IO-initiated interrupts are    *
 * allowed to set bits in INT_PEND0 and INT_PEND1. If access is         *
 * allowed, the PI's response to a partial read is a PRPLY message,     *
 * and the response to a partial write is a PACK message. If access     *
 * is not allowed, the PI's response to a partial read is a PRERR       *
 * message, and the response to a partial write is a PWERR message.     *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




typedef union pi_io_protect_u {
	bdrkreg_t	pi_io_protect_regval;
	struct  {
		bdrkreg_t	ip_io_protect             :	64;
	} pi_io_protect_fld_s;
} pi_io_protect_u_t;




/************************************************************************
 *                                                                      *
 * Description:  This read/write register determines on a               *
 * bit-per-region basis whether read access from a local processor to   *
 * the region is permissible. For example, setting a bit to 0           *
 * prevents speculative reads to that non-existent node. If a read      *
 * request to a non-present region occurs, an ERR response is issued    *
 * to the TRex+ (no PI error registers are modified). It is up to       *
 * software to load this register with the proper contents.             *
 * Region-present checking is only done for coherent read requests -    *
 * partial reads/writes will be issued to a non-present region. The     *
 * setting of these bits does not affect a node's access to its         *
 * CALIAS space.                                                        *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




typedef union pi_region_present_u {
	bdrkreg_t	pi_region_present_regval;
	struct  {
		bdrkreg_t	rp_region_present         :	64;
	} pi_region_present_fld_s;
} pi_region_present_u_t;




/************************************************************************
 *                                                                      *
 *  A read to the location will allow a CPU to identify itself as       *
 * either CPU_A or CPU_B, and will indicate whether the CPU is          *
 * connected to PI 0 or PI 1.                                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_cpu_num_u {
	bdrkreg_t	pi_cpu_num_regval;
	struct  {
		bdrkreg_t	cn_cpu_num                :	 1;
                bdrkreg_t       cn_pi_id                  :      1;
                bdrkreg_t       cn_rsvd                   :     62;
	} pi_cpu_num_fld_s;
} pi_cpu_num_u_t;

#else

typedef union pi_cpu_num_u {
	bdrkreg_t	pi_cpu_num_regval;
	struct	{
		bdrkreg_t	cn_rsvd			  :	62;
		bdrkreg_t	cn_pi_id		  :	 1;
		bdrkreg_t	cn_cpu_num		  :	 1;
	} pi_cpu_num_fld_s;
} pi_cpu_num_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  This read/write location determines the size of the    *
 * Calias Space.                                                        *
 * This register is not reset by a soft reset.                          *
 * NOTE: For predictable behavior, all Calias spaces in a system must   *
 * be set to the same size.                                             *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_calias_size_u {
	bdrkreg_t	pi_calias_size_regval;
	struct  {
		bdrkreg_t	cs_calias_size            :	 4;
		bdrkreg_t       cs_rsvd                   :     60;
	} pi_calias_size_fld_s;
} pi_calias_size_u_t;

#else

typedef union pi_calias_size_u {
	bdrkreg_t	pi_calias_size_regval;
	struct	{
		bdrkreg_t	cs_rsvd			  :	60;
		bdrkreg_t	cs_calias_size		  :	 4;
	} pi_calias_size_fld_s;
} pi_calias_size_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This Read/Write location determines at which value (increment)      *
 * the CRB Timeout Counters cause a timeout error to occur. See         *
 * Section 3.4.2.2, "Time-outs in RRB and WRB" in the         *
 * Processor Interface chapter, volume 1 of this document for more      *
 * details.                                                             *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_max_crb_timeout_u {
	bdrkreg_t	pi_max_crb_timeout_regval;
	struct  {
		bdrkreg_t	mct_max_timeout           :	 8;
		bdrkreg_t       mct_rsvd                  :     56;
	} pi_max_crb_timeout_fld_s;
} pi_max_crb_timeout_u_t;

#else

typedef union pi_max_crb_timeout_u {
	bdrkreg_t	pi_max_crb_timeout_regval;
	struct	{
		bdrkreg_t	mct_rsvd		  :	56;
		bdrkreg_t	mct_max_timeout		  :	 8;
	} pi_max_crb_timeout_fld_s;
} pi_max_crb_timeout_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This Read/Write location determines how often a valid CRB's         *
 * Timeout Counter is incremented. See Section 3.4.2.2,                 *
 * "Time-outs in RRB and WRB" in the Processor Interface      *
 * chapter, volume 1 of this document for more details.                 *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_crb_sfactor_u {
	bdrkreg_t	pi_crb_sfactor_regval;
	struct  {
		bdrkreg_t	cs_sfactor                :	24;
		bdrkreg_t       cs_rsvd                   :     40;
	} pi_crb_sfactor_fld_s;
} pi_crb_sfactor_u_t;

#else

typedef union pi_crb_sfactor_u {
	bdrkreg_t	pi_crb_sfactor_regval;
	struct	{
		bdrkreg_t	cs_rsvd			  :	40;
		bdrkreg_t	cs_sfactor		  :	24;
	} pi_crb_sfactor_fld_s;
} pi_crb_sfactor_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. The PI sets this      *
 * bit when it sees the first transaction initiated by the associated   *
 * CPU.                                                                 *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_cpu_present_a_u {
	bdrkreg_t	pi_cpu_present_a_regval;
	struct  {
		bdrkreg_t	cpa_cpu_present           :	 1;
		bdrkreg_t       cpa_rsvd                  :     63;
	} pi_cpu_present_a_fld_s;
} pi_cpu_present_a_u_t;

#else

typedef union pi_cpu_present_a_u {
	bdrkreg_t	pi_cpu_present_a_regval;
	struct	{
		bdrkreg_t	cpa_rsvd		  :	63;
		bdrkreg_t	cpa_cpu_present		  :	 1;
	} pi_cpu_present_a_fld_s;
} pi_cpu_present_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. The PI sets this      *
 * bit when it sees the first transaction initiated by the associated   *
 * CPU.                                                                 *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_cpu_present_b_u {
	bdrkreg_t	pi_cpu_present_b_regval;
	struct  {
		bdrkreg_t	cpb_cpu_present           :	 1;
		bdrkreg_t       cpb_rsvd                  :     63;
	} pi_cpu_present_b_fld_s;
} pi_cpu_present_b_u_t;

#else

typedef union pi_cpu_present_b_u {
	bdrkreg_t	pi_cpu_present_b_regval;
	struct	{
		bdrkreg_t	cpb_rsvd		  :	63;
		bdrkreg_t	cpb_cpu_present		  :	 1;
	} pi_cpu_present_b_fld_s;
} pi_cpu_present_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  There is one of these registers for each CPU. This     *
 * Read/Write location determines whether the associated CPU is         *
 * enabled to issue external requests. When this bit is zero for a      *
 * processor, the PI ignores SysReq_L from that processor, and so       *
 * never grants it the bus.                                             *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_cpu_enable_a_u {
	bdrkreg_t	pi_cpu_enable_a_regval;
	struct  {
		bdrkreg_t	cea_cpu_enable            :	 1;
		bdrkreg_t       cea_rsvd                  :     63;
	} pi_cpu_enable_a_fld_s;
} pi_cpu_enable_a_u_t;

#else

typedef union pi_cpu_enable_a_u {
	bdrkreg_t	pi_cpu_enable_a_regval;
	struct	{
		bdrkreg_t	cea_rsvd		  :	63;
		bdrkreg_t	cea_cpu_enable		  :	 1;
	} pi_cpu_enable_a_fld_s;
} pi_cpu_enable_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  There is one of these registers for each CPU. This     *
 * Read/Write location determines whether the associated CPU is         *
 * enabled to issue external requests. When this bit is zero for a      *
 * processor, the PI ignores SysReq_L from that processor, and so       *
 * never grants it the bus.                                             *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_cpu_enable_b_u {
	bdrkreg_t	pi_cpu_enable_b_regval;
	struct  {
		bdrkreg_t	ceb_cpu_enable            :	 1;
		bdrkreg_t       ceb_rsvd                  :     63;
	} pi_cpu_enable_b_fld_s;
} pi_cpu_enable_b_u_t;

#else

typedef union pi_cpu_enable_b_u {
	bdrkreg_t	pi_cpu_enable_b_regval;
	struct	{
		bdrkreg_t	ceb_rsvd		  :	63;
		bdrkreg_t	ceb_cpu_enable		  :	 1;
	} pi_cpu_enable_b_fld_s;
} pi_cpu_enable_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. A write to this       *
 * location will cause an NMI to be issued to the CPU.                  *
 *                                                                      *
 ************************************************************************/




typedef union pi_nmi_a_u {
	bdrkreg_t	pi_nmi_a_regval;
	struct  {
		bdrkreg_t	na_nmi_cpu                :	64;
	} pi_nmi_a_fld_s;
} pi_nmi_a_u_t;




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. A write to this       *
 * location will cause an NMI to be issued to the CPU.                  *
 *                                                                      *
 ************************************************************************/




typedef union pi_nmi_b_u {
	bdrkreg_t	pi_nmi_b_regval;
	struct  {
		bdrkreg_t	nb_nmi_cpu                :	64;
	} pi_nmi_b_fld_s;
} pi_nmi_b_u_t;




/************************************************************************
 *                                                                      *
 *  A write to this register allows a single bit in the INT_PEND0 or    *
 * INT_PEND1 registers to be set or cleared. If 6 is clear, a bit is    *
 * modified in INT_PEND0, while if 6 is set, a bit is modified in       *
 * INT_PEND1. The value in 5:0 (ranging from 63 to 0) will determine    *
 * which bit in the register is effected. The value of 8 will           *
 * determine whether the desired bit is set (8=1) or cleared (8=0).     *
 * This is the only register which is accessible by IO issued PWRI      *
 * command and is protected through the IO_PROTECT register. If the     *
 * region bit in the IO_PROTECT is not set then a WERR reply is         *
 * issued. CPU access is controlled through CPU_PROTECT. The contents   *
 * of this register are masked with the contents of INT_MASK_A          *
 * (INT_MASK_B) to determine whether an L2 interrupt is issued to       *
 * CPU_A (CPU_B).                                                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_int_pend_mod_u {
	bdrkreg_t	pi_int_pend_mod_regval;
	struct  {
		bdrkreg_t	ipm_bit_select            :	 6;
                bdrkreg_t       ipm_reg_select            :      1;
                bdrkreg_t       ipm_rsvd_1                :      1;
                bdrkreg_t       ipm_value                 :      1;
                bdrkreg_t       ipm_rsvd                  :     55;
	} pi_int_pend_mod_fld_s;
} pi_int_pend_mod_u_t;

#else

typedef union pi_int_pend_mod_u {
	bdrkreg_t	pi_int_pend_mod_regval;
	struct	{
		bdrkreg_t	ipm_rsvd		  :	55;
		bdrkreg_t	ipm_value		  :	 1;
		bdrkreg_t	ipm_rsvd_1		  :	 1;
		bdrkreg_t	ipm_reg_select		  :	 1;
		bdrkreg_t	ipm_bit_select		  :	 6;
	} pi_int_pend_mod_fld_s;
} pi_int_pend_mod_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This read-only register provides information about interrupts       *
 * that are currently pending. The interrupts in this register map to   *
 * interrupt level 2 (L2). The GFX_INT_A/B bits are set by hardware     *
 * but must be cleared by software.                                     *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_int_pend0_u {
	bdrkreg_t	pi_int_pend0_regval;
	struct  {
		bdrkreg_t	ip_int_pend0_lo           :	 1;
                bdrkreg_t       ip_gfx_int_a              :      1;
                bdrkreg_t       ip_gfx_int_b              :      1;
                bdrkreg_t       ip_page_migration         :      1;
                bdrkreg_t       ip_uart_ucntrl            :      1;
                bdrkreg_t       ip_or_cc_pend_a           :      1;
                bdrkreg_t       ip_or_cc_pend_b           :      1;
                bdrkreg_t       ip_int_pend0_hi           :     57;
	} pi_int_pend0_fld_s;
} pi_int_pend0_u_t;

#else

typedef union pi_int_pend0_u {
	bdrkreg_t	pi_int_pend0_regval;
	struct	{
		bdrkreg_t	ip_int_pend0_hi		  :	57;
		bdrkreg_t	ip_or_cc_pend_b		  :	 1;
		bdrkreg_t	ip_or_cc_pend_a		  :	 1;
		bdrkreg_t	ip_uart_ucntrl		  :	 1;
		bdrkreg_t	ip_page_migration	  :	 1;
		bdrkreg_t	ip_gfx_int_b		  :	 1;
		bdrkreg_t	ip_gfx_int_a		  :	 1;
		bdrkreg_t	ip_int_pend0_lo		  :	 1;
	} pi_int_pend0_fld_s;
} pi_int_pend0_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This read-only register provides information about interrupts       *
 * that are currently pending. The interrupts in this register map to   *
 * interrupt level 3 (L3), unless remapped by the INT_PEND1_REMAP       *
 * register. The SYS_COR_ERR_A/B, RTC_DROP_OUT, and NACK_INT_A/B bits   *
 * are set by hardware but must be cleared by software. The             *
 * SYSTEM_SHUTDOWN, NI_ERROR, LB_ERROR and XB_ERROR bits just reflect   *
 * the value of other logic, and cannot be changed by PI register       *
 * writes.                                                              *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_int_pend1_u {
	bdrkreg_t	pi_int_pend1_regval;
	struct  {
		bdrkreg_t	ip_int_pend1              :	54;
                bdrkreg_t       ip_xb_error               :      1;
                bdrkreg_t       ip_lb_error               :      1;
                bdrkreg_t       ip_nack_int_a             :      1;
                bdrkreg_t       ip_nack_int_b             :      1;
                bdrkreg_t       ip_perf_cntr_oflow        :      1;
                bdrkreg_t       ip_sys_cor_err_b          :      1;
                bdrkreg_t       ip_sys_cor_err_a          :      1;
                bdrkreg_t       ip_md_corr_error          :      1;
                bdrkreg_t       ip_ni_error               :      1;
                bdrkreg_t       ip_system_shutdown        :      1;
	} pi_int_pend1_fld_s;
} pi_int_pend1_u_t;

#else

typedef union pi_int_pend1_u {
	bdrkreg_t	pi_int_pend1_regval;
	struct	{
		bdrkreg_t	ip_system_shutdown	  :	 1;
		bdrkreg_t	ip_ni_error		  :	 1;
		bdrkreg_t	ip_md_corr_error	  :	 1;
		bdrkreg_t	ip_sys_cor_err_a	  :	 1;
		bdrkreg_t	ip_sys_cor_err_b	  :	 1;
		bdrkreg_t	ip_perf_cntr_oflow	  :	 1;
		bdrkreg_t	ip_nack_int_b		  :	 1;
		bdrkreg_t	ip_nack_int_a		  :	 1;
		bdrkreg_t	ip_lb_error		  :	 1;
		bdrkreg_t	ip_xb_error		  :	 1;
		bdrkreg_t	ip_int_pend1		  :	54;
	} pi_int_pend1_fld_s;
} pi_int_pend1_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This read/write register masks the contents of INT_PEND0 to         *
 * determine whether an L2 interrupt (bit 10 of the processor's Cause   *
 * register) is sent to CPU_A if the same bit in the INT_PEND0          *
 * register is also set. Only one processor in a Bedrock should         *
 * enable the PAGE_MIGRATION bit/interrupt.                             *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_int_mask0_a_u {
	bdrkreg_t	pi_int_mask0_a_regval;
	struct  {
		bdrkreg_t	ima_int_mask0_lo          :	 1;
                bdrkreg_t       ima_gfx_int_a             :      1;
                bdrkreg_t       ima_gfx_int_b             :      1;
                bdrkreg_t       ima_page_migration        :      1;
                bdrkreg_t       ima_uart_ucntrl           :      1;
                bdrkreg_t       ima_or_ccp_mask_a         :      1;
                bdrkreg_t       ima_or_ccp_mask_b         :      1;
                bdrkreg_t       ima_int_mask0_hi          :     57;
	} pi_int_mask0_a_fld_s;
} pi_int_mask0_a_u_t;

#else

typedef union pi_int_mask0_a_u {
	bdrkreg_t	pi_int_mask0_a_regval;
	struct	{
		bdrkreg_t	ima_int_mask0_hi	  :	57;
		bdrkreg_t	ima_or_ccp_mask_b	  :	 1;
		bdrkreg_t	ima_or_ccp_mask_a	  :	 1;
		bdrkreg_t	ima_uart_ucntrl		  :	 1;
		bdrkreg_t	ima_page_migration	  :	 1;
		bdrkreg_t	ima_gfx_int_b		  :	 1;
		bdrkreg_t	ima_gfx_int_a		  :	 1;
		bdrkreg_t	ima_int_mask0_lo	  :	 1;
	} pi_int_mask0_a_fld_s;
} pi_int_mask0_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This read/write register masks the contents of INT_PEND1 to         *
 * determine whether an interrupt should be sent. Bits 63:32 always     *
 * generate an L3 interrupt (bit 11 of the processor's Cause            *
 * register) is sent to CPU_A if the same bit in the INT_PEND1          *
 * register is set. Bits 31:0 can generate either an L3 or L2           *
 * interrupt, depending on the value of INT_PEND1_REMAP[3:0]. Only      *
 * one processor in a Bedrock should enable the NI_ERROR, LB_ERROR,     *
 * XB_ERROR and MD_CORR_ERROR bits.                                     *
 *                                                                      *
 ************************************************************************/




typedef union pi_int_mask1_a_u {
	bdrkreg_t	pi_int_mask1_a_regval;
	struct  {
		bdrkreg_t	ima_int_mask1             :	64;
	} pi_int_mask1_a_fld_s;
} pi_int_mask1_a_u_t;




/************************************************************************
 *                                                                      *
 *  This read/write register masks the contents of INT_PEND0 to         *
 * determine whether an L2 interrupt (bit 10 of the processor's Cause   *
 * register) is sent to CPU_B if the same bit in the INT_PEND0          *
 * register is also set. Only one processor in a Bedrock should         *
 * enable the PAGE_MIGRATION bit/interrupt.                             *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_int_mask0_b_u {
	bdrkreg_t	pi_int_mask0_b_regval;
	struct  {
		bdrkreg_t	imb_int_mask0_lo          :	 1;
                bdrkreg_t       imb_gfx_int_a             :      1;
                bdrkreg_t       imb_gfx_int_b             :      1;
                bdrkreg_t       imb_page_migration        :      1;
                bdrkreg_t       imb_uart_ucntrl           :      1;
                bdrkreg_t       imb_or_ccp_mask_a         :      1;
                bdrkreg_t       imb_or_ccp_mask_b         :      1;
                bdrkreg_t       imb_int_mask0_hi          :     57;
	} pi_int_mask0_b_fld_s;
} pi_int_mask0_b_u_t;

#else

typedef union pi_int_mask0_b_u {
	bdrkreg_t	pi_int_mask0_b_regval;
	struct	{
		bdrkreg_t	imb_int_mask0_hi	  :	57;
		bdrkreg_t	imb_or_ccp_mask_b	  :	 1;
		bdrkreg_t	imb_or_ccp_mask_a	  :	 1;
		bdrkreg_t	imb_uart_ucntrl		  :	 1;
		bdrkreg_t	imb_page_migration	  :	 1;
		bdrkreg_t	imb_gfx_int_b		  :	 1;
		bdrkreg_t	imb_gfx_int_a		  :	 1;
		bdrkreg_t	imb_int_mask0_lo	  :	 1;
	} pi_int_mask0_b_fld_s;
} pi_int_mask0_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This read/write register masks the contents of INT_PEND1 to         *
 * determine whether an interrupt should be sent. Bits 63:32 always     *
 * generate an L3 interrupt (bit 11 of the processor's Cause            *
 * register) is sent to CPU_B if the same bit in the INT_PEND1          *
 * register is set. Bits 31:0 can generate either an L3 or L2           *
 * interrupt, depending on the value of INT_PEND1_REMAP[3:0]. Only      *
 * one processor in a Bedrock should enable the NI_ERROR, LB_ERROR,     *
 * XB_ERROR and MD_CORR_ERROR bits.                                     *
 *                                                                      *
 ************************************************************************/




typedef union pi_int_mask1_b_u {
	bdrkreg_t	pi_int_mask1_b_regval;
	struct  {
		bdrkreg_t	imb_int_mask1             :	64;
	} pi_int_mask1_b_fld_s;
} pi_int_mask1_b_u_t;




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. These registers do    *
 * not have access protection. A store to this location by a CPU will   *
 * cause the bit corresponding to the source's region to be set in      *
 * CC_PEND_A (or CC_PEND_B). The contents of CC_PEND_A (or CC_PEND_B)   *
 * determines on a bit-per-region basis whether a CPU-to-CPU            *
 * interrupt is pending CPU_A (or CPU_B).                               *
 *                                                                      *
 ************************************************************************/




typedef union pi_cc_pend_set_a_u {
	bdrkreg_t	pi_cc_pend_set_a_regval;
	struct  {
		bdrkreg_t	cpsa_cc_pend              :	64;
	} pi_cc_pend_set_a_fld_s;
} pi_cc_pend_set_a_u_t;




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. These registers do    *
 * not have access protection. A store to this location by a CPU will   *
 * cause the bit corresponding to the source's region to be set in      *
 * CC_PEND_A (or CC_PEND_B). The contents of CC_PEND_A (or CC_PEND_B)   *
 * determines on a bit-per-region basis whether a CPU-to-CPU            *
 * interrupt is pending CPU_A (or CPU_B).                               *
 *                                                                      *
 ************************************************************************/




typedef union pi_cc_pend_set_b_u {
	bdrkreg_t	pi_cc_pend_set_b_regval;
	struct  {
		bdrkreg_t	cpsb_cc_pend              :	64;
	} pi_cc_pend_set_b_fld_s;
} pi_cc_pend_set_b_u_t;




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Reading this          *
 * location will return the contents of CC_PEND_A (or CC_PEND_B).       *
 * Writing this location will clear the bits corresponding to which     *
 * data bits are driven high during the store; therefore, storing all   *
 * ones would clear all bits.                                           *
 *                                                                      *
 ************************************************************************/




typedef union pi_cc_pend_clr_a_u {
	bdrkreg_t	pi_cc_pend_clr_a_regval;
	struct  {
		bdrkreg_t	cpca_cc_pend              :	64;
	} pi_cc_pend_clr_a_fld_s;
} pi_cc_pend_clr_a_u_t;




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Reading this          *
 * location will return the contents of CC_PEND_A (or CC_PEND_B).       *
 * Writing this location will clear the bits corresponding to which     *
 * data bits are driven high during the store; therefore, storing all   *
 * ones would clear all bits.                                           *
 *                                                                      *
 ************************************************************************/




typedef union pi_cc_pend_clr_b_u {
	bdrkreg_t	pi_cc_pend_clr_b_regval;
	struct  {
		bdrkreg_t	cpcb_cc_pend              :	64;
	} pi_cc_pend_clr_b_fld_s;
} pi_cc_pend_clr_b_u_t;




/************************************************************************
 *                                                                      *
 *  This read/write register masks the contents of both CC_PEND_A and   *
 * CC_PEND_B.                                                           *
 *                                                                      *
 ************************************************************************/




typedef union pi_cc_mask_u {
	bdrkreg_t	pi_cc_mask_regval;
	struct  {
		bdrkreg_t	cm_cc_mask                :	64;
	} pi_cc_mask_fld_s;
} pi_cc_mask_u_t;




/************************************************************************
 *                                                                      *
 *  This read/write register redirects INT_PEND1[31:0] from L3 to L2    *
 * interrupt level.Bit 4 in this register is used to enable error       *
 * interrupt forwarding to the II. When this bit is set, if any of      *
 * the three memory interrupts (correctable error, uncorrectable        *
 * error, or page migration), or the NI, LB or XB error interrupts      *
 * are set, the PI_II_ERROR_INT wire will be asserted. When this wire   *
 * is asserted, the II will send an interrupt to the node specified     *
 * in its IIDSR (Interrupt Destination Register). This allows these     *
 * interrupts to be forwarded to another node.                          *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_int_pend1_remap_u {
	bdrkreg_t	pi_int_pend1_remap_regval;
	struct  {
		bdrkreg_t	ipr_remap_0               :	 1;
                bdrkreg_t       ipr_remap_1               :      1;
                bdrkreg_t       ipr_remap_2               :      1;
                bdrkreg_t       ipr_remap_3               :      1;
                bdrkreg_t       ipr_error_forward         :      1;
                bdrkreg_t       ipr_reserved              :     59;
	} pi_int_pend1_remap_fld_s;
} pi_int_pend1_remap_u_t;

#else

typedef union pi_int_pend1_remap_u {
	bdrkreg_t	pi_int_pend1_remap_regval;
	struct	{
		bdrkreg_t	ipr_reserved		  :	59;
		bdrkreg_t	ipr_error_forward	  :	 1;
		bdrkreg_t	ipr_remap_3		  :	 1;
		bdrkreg_t	ipr_remap_2		  :	 1;
		bdrkreg_t	ipr_remap_1		  :	 1;
		bdrkreg_t	ipr_remap_0		  :	 1;
	} pi_int_pend1_remap_fld_s;
} pi_int_pend1_remap_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. When the real time    *
 * counter (RT_Counter) is equal to the value in this register, the     *
 * RT_INT_PEND register is set, which causes a Level-4 interrupt to     *
 * be sent to the processor.                                            *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_rt_compare_a_u {
	bdrkreg_t	pi_rt_compare_a_regval;
	struct  {
		bdrkreg_t	rca_rt_compare            :	55;
		bdrkreg_t       rca_rsvd                  :      9;
	} pi_rt_compare_a_fld_s;
} pi_rt_compare_a_u_t;

#else

typedef union pi_rt_compare_a_u {
        bdrkreg_t       pi_rt_compare_a_regval;
        struct  {
                bdrkreg_t       rca_rsvd                  :      9;
                bdrkreg_t       rca_rt_compare            :     55;
        } pi_rt_compare_a_fld_s;
} pi_rt_compare_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. When the real time    *
 * counter (RT_Counter) is equal to the value in this register, the     *
 * RT_INT_PEND register is set, which causes a Level-4 interrupt to     *
 * be sent to the processor.                                            *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_rt_compare_b_u {
	bdrkreg_t	pi_rt_compare_b_regval;
	struct  {
		bdrkreg_t	rcb_rt_compare            :	55;
		bdrkreg_t       rcb_rsvd                  :      9;
	} pi_rt_compare_b_fld_s;
} pi_rt_compare_b_u_t;

#else

typedef union pi_rt_compare_b_u {
	bdrkreg_t	pi_rt_compare_b_regval;
	struct	{
		bdrkreg_t	rcb_rsvd		  :	 9;
		bdrkreg_t	rcb_rt_compare		  :	55;
	} pi_rt_compare_b_fld_s;
} pi_rt_compare_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  When the least significant 32 bits of the real time counter         *
 * (RT_Counter) are equal to the value in this register, the            *
 * PROF_INT_PEND_A and PROF_INT_PEND_B registers are set to 0x1.        *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_profile_compare_u {
	bdrkreg_t	pi_profile_compare_regval;
	struct  {
		bdrkreg_t	pc_profile_compare        :	32;
		bdrkreg_t       pc_rsvd                   :     32;
	} pi_profile_compare_fld_s;
} pi_profile_compare_u_t;

#else

typedef union pi_profile_compare_u {
	bdrkreg_t	pi_profile_compare_regval;
	struct	{
		bdrkreg_t	pc_rsvd			  :	32;
		bdrkreg_t	pc_profile_compare	  :	32;
	} pi_profile_compare_fld_s;
} pi_profile_compare_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. If the bit in the     *
 * corresponding RT_INT_EN_A/B register is set, the processor's level   *
 * 5 interrupt is set to the value of the RTC_INT_PEND bit in this      *
 * register. Storing any value to this location will clear the          *
 * RTC_INT_PEND bit in the register.                                    *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_rt_int_pend_a_u {
	bdrkreg_t	pi_rt_int_pend_a_regval;
	struct  {
		bdrkreg_t	ripa_rtc_int_pend         :	 1;
		bdrkreg_t       ripa_rsvd                 :     63;
	} pi_rt_int_pend_a_fld_s;
} pi_rt_int_pend_a_u_t;

#else

typedef union pi_rt_int_pend_a_u {
	bdrkreg_t	pi_rt_int_pend_a_regval;
	struct	{
		bdrkreg_t	ripa_rsvd		  :	63;
		bdrkreg_t	ripa_rtc_int_pend	  :	 1;
	} pi_rt_int_pend_a_fld_s;
} pi_rt_int_pend_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. If the bit in the     *
 * corresponding RT_INT_EN_A/B register is set, the processor's level   *
 * 5 interrupt is set to the value of the RTC_INT_PEND bit in this      *
 * register. Storing any value to this location will clear the          *
 * RTC_INT_PEND bit in the register.                                    *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_rt_int_pend_b_u {
	bdrkreg_t	pi_rt_int_pend_b_regval;
	struct  {
		bdrkreg_t	ripb_rtc_int_pend         :	 1;
		bdrkreg_t       ripb_rsvd                 :     63;
	} pi_rt_int_pend_b_fld_s;
} pi_rt_int_pend_b_u_t;

#else

typedef union pi_rt_int_pend_b_u {
	bdrkreg_t	pi_rt_int_pend_b_regval;
	struct	{
		bdrkreg_t	ripb_rsvd		  :	63;
		bdrkreg_t	ripb_rtc_int_pend	  :	 1;
	} pi_rt_int_pend_b_fld_s;
} pi_rt_int_pend_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Both registers are    *
 * set when the PROFILE_COMPARE register is equal to bits [31:0] of     *
 * the RT_Counter. If the bit in the corresponding PROF_INT_EN_A/B      *
 * register is set, the processor's level 5 interrupt is set to the     *
 * value of the PROF_INT_PEND bit in this register. Storing any value   *
 * to this location will clear the PROF_INT_PEND bit in the register.   *
 * The reason for having A and B versions of this register is that      *
 * they need to be cleared independently.                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_prof_int_pend_a_u {
	bdrkreg_t	pi_prof_int_pend_a_regval;
	struct  {
		bdrkreg_t	pipa_prof_int_pend        :	 1;
		bdrkreg_t       pipa_rsvd                 :     63;
	} pi_prof_int_pend_a_fld_s;
} pi_prof_int_pend_a_u_t;

#else

typedef union pi_prof_int_pend_a_u {
	bdrkreg_t	pi_prof_int_pend_a_regval;
	struct	{
		bdrkreg_t	pipa_rsvd		  :	63;
		bdrkreg_t	pipa_prof_int_pend	  :	 1;
	} pi_prof_int_pend_a_fld_s;
} pi_prof_int_pend_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Both registers are    *
 * set when the PROFILE_COMPARE register is equal to bits [31:0] of     *
 * the RT_Counter. If the bit in the corresponding PROF_INT_EN_A/B      *
 * register is set, the processor's level 5 interrupt is set to the     *
 * value of the PROF_INT_PEND bit in this register. Storing any value   *
 * to this location will clear the PROF_INT_PEND bit in the register.   *
 * The reason for having A and B versions of this register is that      *
 * they need to be cleared independently.                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_prof_int_pend_b_u {
	bdrkreg_t	pi_prof_int_pend_b_regval;
	struct  {
		bdrkreg_t	pipb_prof_int_pend        :	 1;
		bdrkreg_t       pipb_rsvd                 :     63;
	} pi_prof_int_pend_b_fld_s;
} pi_prof_int_pend_b_u_t;

#else

typedef union pi_prof_int_pend_b_u {
	bdrkreg_t	pi_prof_int_pend_b_regval;
	struct	{
		bdrkreg_t	pipb_rsvd		  :	63;
		bdrkreg_t	pipb_prof_int_pend	  :	 1;
	} pi_prof_int_pend_b_fld_s;
} pi_prof_int_pend_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Enables RTC           *
 * interrupt to the associated CPU.                                     *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_rt_int_en_a_u {
	bdrkreg_t	pi_rt_int_en_a_regval;
	struct  {
		bdrkreg_t	riea_rtc_int_en           :	 1;
		bdrkreg_t       riea_rsvd                 :     63;
	} pi_rt_int_en_a_fld_s;
} pi_rt_int_en_a_u_t;

#else

typedef union pi_rt_int_en_a_u {
        bdrkreg_t       pi_rt_int_en_a_regval;
        struct  {
                bdrkreg_t       riea_rsvd                 :     63;
                bdrkreg_t       riea_rtc_int_en           :      1;
        } pi_rt_int_en_a_fld_s;
} pi_rt_int_en_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Enables RTC           *
 * interrupt to the associated CPU.                                     *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_rt_int_en_b_u {
	bdrkreg_t	pi_rt_int_en_b_regval;
	struct  {
		bdrkreg_t	rieb_rtc_int_en           :	 1;
		bdrkreg_t       rieb_rsvd                 :     63;
	} pi_rt_int_en_b_fld_s;
} pi_rt_int_en_b_u_t;

#else

typedef union pi_rt_int_en_b_u {
        bdrkreg_t       pi_rt_int_en_b_regval;
        struct  {
                bdrkreg_t       rieb_rsvd                 :     63;
                bdrkreg_t       rieb_rtc_int_en           :      1;
        } pi_rt_int_en_b_fld_s;
} pi_rt_int_en_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Enables profiling     *
 * interrupt to the associated CPU.                                     *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_prof_int_en_a_u {
	bdrkreg_t	pi_prof_int_en_a_regval;
	struct  {
		bdrkreg_t	piea_prof_int_en          :	 1;
		bdrkreg_t       piea_rsvd                 :     63;
	} pi_prof_int_en_a_fld_s;
} pi_prof_int_en_a_u_t;

#else

typedef union pi_prof_int_en_a_u {
	bdrkreg_t	pi_prof_int_en_a_regval;
	struct	{
		bdrkreg_t	piea_rsvd		  :	63;
		bdrkreg_t	piea_prof_int_en	  :	 1;
	} pi_prof_int_en_a_fld_s;
} pi_prof_int_en_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. Enables profiling     *
 * interrupt to the associated CPU.                                     *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_prof_int_en_b_u {
	bdrkreg_t	pi_prof_int_en_b_regval;
	struct  {
		bdrkreg_t	pieb_prof_int_en          :	 1;
		bdrkreg_t       pieb_rsvd                 :     63;
	} pi_prof_int_en_b_fld_s;
} pi_prof_int_en_b_u_t;

#else

typedef union pi_prof_int_en_b_u {
	bdrkreg_t	pi_prof_int_en_b_regval;
	struct	{
		bdrkreg_t	pieb_rsvd		  :	63;
		bdrkreg_t	pieb_prof_int_en	  :	 1;
	} pi_prof_int_en_b_fld_s;
} pi_prof_int_en_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register controls operation of the debug data from the PI,     *
 * along with Debug_Sel[2:0] from the Debug module. For some values     *
 * of Debug_Sel[2:0], the B_SEL bit selects whether the debug bits      *
 * are looking at the processor A or processor B logic. The remaining   *
 * bits select which signal(s) are ORed to create DebugData bits 31     *
 * and 30 for all of the PI debug selections.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_debug_sel_u {
	bdrkreg_t	pi_debug_sel_regval;
	struct  {
		bdrkreg_t	ds_low_t5cc_a             :	 1;
                bdrkreg_t       ds_low_t5cc_b             :      1;
                bdrkreg_t       ds_low_totcc_a            :      1;
                bdrkreg_t       ds_low_totcc_b            :      1;
                bdrkreg_t       ds_low_reqcc_a            :      1;
                bdrkreg_t       ds_low_reqcc_b            :      1;
                bdrkreg_t       ds_low_rplcc_a            :      1;
                bdrkreg_t       ds_low_rplcc_b            :      1;
                bdrkreg_t       ds_low_intcc              :      1;
                bdrkreg_t       ds_low_perf_inc_a_0       :      1;
                bdrkreg_t       ds_low_perf_inc_a_1       :      1;
                bdrkreg_t       ds_low_perf_inc_b_0       :      1;
                bdrkreg_t       ds_low_perf_inc_b_1       :      1;
                bdrkreg_t       ds_high_t5cc_a            :      1;
                bdrkreg_t       ds_high_t5cc_b            :      1;
                bdrkreg_t       ds_high_totcc_a           :      1;
                bdrkreg_t       ds_high_totcc_b           :      1;
                bdrkreg_t       ds_high_reqcc_a           :      1;
                bdrkreg_t       ds_high_reqcc_b           :      1;
                bdrkreg_t       ds_high_rplcc_a           :      1;
                bdrkreg_t       ds_high_rplcc_b           :      1;
                bdrkreg_t       ds_high_intcc             :      1;
                bdrkreg_t       ds_high_perf_inc_a_0      :      1;
                bdrkreg_t       ds_high_perf_inc_a_1      :      1;
                bdrkreg_t       ds_high_perf_inc_b_0      :      1;
                bdrkreg_t       ds_high_perf_inc_b_1      :      1;
                bdrkreg_t       ds_b_sel                  :      1;
                bdrkreg_t       ds_rsvd                   :     37;
	} pi_debug_sel_fld_s;
} pi_debug_sel_u_t;

#else

typedef union pi_debug_sel_u {
	bdrkreg_t	pi_debug_sel_regval;
	struct	{
		bdrkreg_t	ds_rsvd			  :	37;
		bdrkreg_t	ds_b_sel		  :	 1;
		bdrkreg_t	ds_high_perf_inc_b_1	  :	 1;
		bdrkreg_t	ds_high_perf_inc_b_0	  :	 1;
		bdrkreg_t	ds_high_perf_inc_a_1	  :	 1;
		bdrkreg_t	ds_high_perf_inc_a_0	  :	 1;
		bdrkreg_t	ds_high_intcc		  :	 1;
		bdrkreg_t	ds_high_rplcc_b		  :	 1;
		bdrkreg_t	ds_high_rplcc_a		  :	 1;
		bdrkreg_t	ds_high_reqcc_b		  :	 1;
		bdrkreg_t	ds_high_reqcc_a		  :	 1;
		bdrkreg_t	ds_high_totcc_b		  :	 1;
		bdrkreg_t	ds_high_totcc_a		  :	 1;
		bdrkreg_t	ds_high_t5cc_b		  :	 1;
		bdrkreg_t	ds_high_t5cc_a		  :	 1;
		bdrkreg_t	ds_low_perf_inc_b_1	  :	 1;
		bdrkreg_t	ds_low_perf_inc_b_0	  :	 1;
		bdrkreg_t	ds_low_perf_inc_a_1	  :	 1;
		bdrkreg_t	ds_low_perf_inc_a_0	  :	 1;
		bdrkreg_t	ds_low_intcc		  :	 1;
		bdrkreg_t	ds_low_rplcc_b		  :	 1;
		bdrkreg_t	ds_low_rplcc_a		  :	 1;
		bdrkreg_t	ds_low_reqcc_b		  :	 1;
		bdrkreg_t	ds_low_reqcc_a		  :	 1;
		bdrkreg_t	ds_low_totcc_b		  :	 1;
		bdrkreg_t	ds_low_totcc_a		  :	 1;
		bdrkreg_t	ds_low_t5cc_b		  :	 1;
		bdrkreg_t	ds_low_t5cc_a		  :	 1;
	} pi_debug_sel_fld_s;
} pi_debug_sel_u_t;

#endif


/************************************************************************
 *                                                                      *
 *  A write to this register allows a single bit in the INT_PEND0 or    *
 * INT_PEND1 registers to be set or cleared. If 6 is clear, a bit is    *
 * modified in INT_PEND0, while if 6 is set, a bit is modified in       *
 * INT_PEND1. The value in 5:0 (ranging from 63 to 0) will determine    *
 * which bit in the register is effected. The value of 8 will           *
 * determine whether the desired bit is set (8=1) or cleared (8=0).     *
 * This is the only register which is accessible by IO issued PWRI      *
 * command and is protected through the IO_PROTECT register. If the     *
 * region bit in the IO_PROTECT is not set then a WERR reply is         *
 * issued. CPU access is controlled through CPU_PROTECT. The contents   *
 * of this register are masked with the contents of INT_MASK_A          *
 * (INT_MASK_B) to determine whether an L2 interrupt is issued to       *
 * CPU_A (CPU_B).                                                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_int_pend_mod_alias_u {
	bdrkreg_t	pi_int_pend_mod_alias_regval;
	struct  {
		bdrkreg_t	ipma_bit_select           :	 6;
                bdrkreg_t       ipma_reg_select           :      1;
                bdrkreg_t       ipma_rsvd_1               :      1;
                bdrkreg_t       ipma_value                :      1;
                bdrkreg_t       ipma_rsvd                 :     55;
	} pi_int_pend_mod_alias_fld_s;
} pi_int_pend_mod_alias_u_t;

#else

typedef union pi_int_pend_mod_alias_u {
	bdrkreg_t	pi_int_pend_mod_alias_regval;
	struct	{
		bdrkreg_t	ipma_rsvd		  :	55;
		bdrkreg_t	ipma_value		  :	 1;
		bdrkreg_t	ipma_rsvd_1		  :	 1;
		bdrkreg_t	ipma_reg_select		  :	 1;
		bdrkreg_t	ipma_bit_select		  :	 6;
	} pi_int_pend_mod_alias_fld_s;
} pi_int_pend_mod_alias_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. This register         *
 * specifies the value of the Graphics Page. Uncached writes into the   *
 * Graphics Page (with uncached attribute of IO) are done with GFXWS    *
 * commands rather than the normal PWRI commands. GFXWS commands are    *
 * tracked with the graphics credit counters.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_page_a_u {
	bdrkreg_t	pi_gfx_page_a_regval;
	struct  {
		bdrkreg_t	gpa_rsvd_1                :	17;
                bdrkreg_t       gpa_gfx_page_addr         :     23;
                bdrkreg_t       gpa_en_gfx_page           :      1;
                bdrkreg_t       gpa_rsvd                  :     23;
	} pi_gfx_page_a_fld_s;
} pi_gfx_page_a_u_t;

#else

typedef union pi_gfx_page_a_u {
	bdrkreg_t	pi_gfx_page_a_regval;
	struct	{
		bdrkreg_t	gpa_rsvd		  :	23;
		bdrkreg_t	gpa_en_gfx_page		  :	 1;
		bdrkreg_t	gpa_gfx_page_addr	  :	23;
		bdrkreg_t	gpa_rsvd_1		  :	17;
	} pi_gfx_page_a_fld_s;
} pi_gfx_page_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. This register         *
 * counts graphics credits. This counter is decremented for each        *
 * doubleword sent to graphics with GFXWS or GFXWL commands. It is      *
 * incremented for each doubleword acknowledge from graphics. When      *
 * this counter has a smaller value than the GFX_BIAS register,         *
 * SysWrRdy_L is deasserted, an interrupt is sent to the processor,     *
 * and SysWrRdy_L is allowed to be asserted again. This is the basic    *
 * mechanism for flow-controlling graphics writes.                      *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_credit_cntr_a_u {
	bdrkreg_t	pi_gfx_credit_cntr_a_regval;
	struct  {
		bdrkreg_t	gcca_gfx_credit_cntr      :	12;
		bdrkreg_t       gcca_rsvd                 :     52;
	} pi_gfx_credit_cntr_a_fld_s;
} pi_gfx_credit_cntr_a_u_t;

#else

typedef union pi_gfx_credit_cntr_a_u {
	bdrkreg_t	pi_gfx_credit_cntr_a_regval;
	struct	{
		bdrkreg_t	gcca_rsvd		  :	52;
		bdrkreg_t	gcca_gfx_credit_cntr	  :	12;
	} pi_gfx_credit_cntr_a_fld_s;
} pi_gfx_credit_cntr_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. When the graphics     *
 * credit counter is less than or equal to this value, a flow control   *
 * interrupt is sent.                                                   *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_bias_a_u {
	bdrkreg_t	pi_gfx_bias_a_regval;
	struct  {
		bdrkreg_t	gba_gfx_bias              :	12;
		bdrkreg_t       gba_rsvd                  :     52;
	} pi_gfx_bias_a_fld_s;
} pi_gfx_bias_a_u_t;

#else

typedef union pi_gfx_bias_a_u {
	bdrkreg_t	pi_gfx_bias_a_regval;
	struct	{
		bdrkreg_t	gba_rsvd		  :	52;
		bdrkreg_t	gba_gfx_bias		  :	12;
	} pi_gfx_bias_a_fld_s;
} pi_gfx_bias_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  There is one of these registers for each CPU. When     *
 * this counter reaches the value of the GFX_INT_CMP register, an       *
 * interrupt is sent to the associated processor. At each clock         *
 * cycle, the value in this register can be changed by any one of the   *
 * following actions:                                                   *
 * - Written by software.                                               *
 * - Loaded with the value of GFX_INT_CMP, when an interrupt, NMI, or   *
 * soft reset occurs, thus preventing an additional interrupt.          *
 * - Zeroed, when the GFX_CREDIT_CNTR rises above the bias value.       *
 * - Incremented (by one at each clock) for each clock that the         *
 * GFX_CREDIT_CNTR is less than or equal to zero.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_int_cntr_a_u {
	bdrkreg_t	pi_gfx_int_cntr_a_regval;
	struct  {
		bdrkreg_t	gica_gfx_int_cntr         :	26;
		bdrkreg_t       gica_rsvd                 :     38;
	} pi_gfx_int_cntr_a_fld_s;
} pi_gfx_int_cntr_a_u_t;

#else

typedef union pi_gfx_int_cntr_a_u {
	bdrkreg_t	pi_gfx_int_cntr_a_regval;
	struct	{
		bdrkreg_t	gica_rsvd		  :	38;
		bdrkreg_t	gica_gfx_int_cntr	  :	26;
	} pi_gfx_int_cntr_a_fld_s;
} pi_gfx_int_cntr_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. The value in this     *
 * register is loaded into the GFX_INT_CNTR register when an            *
 * interrupt, NMI, or soft reset is sent to the processor. The value    *
 * in this register is compared to the value of GFX_INT_CNTR and an     *
 * interrupt is sent when they become equal.                            *
 *                                                                      *
 ************************************************************************/




#ifdef LINUX

typedef union pi_gfx_int_cmp_a_u {
	bdrkreg_t	pi_gfx_int_cmp_a_regval;
	struct  {
		bdrkreg_t	gica_gfx_int_cmp          :	26;
		bdrkreg_t       gica_rsvd                 :     38;
	} pi_gfx_int_cmp_a_fld_s;
} pi_gfx_int_cmp_a_u_t;

#else

typedef union pi_gfx_int_cmp_a_u {
	bdrkreg_t	pi_gfx_int_cmp_a_regval;
	struct	{
		bdrkreg_t	gica_rsvd		  :	38;
		bdrkreg_t	gica_gfx_int_cmp	  :	26;
	} pi_gfx_int_cmp_a_fld_s;
} pi_gfx_int_cmp_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. This register         *
 * specifies the value of the Graphics Page. Uncached writes into the   *
 * Graphics Page (with uncached attribute of IO) are done with GFXWS    *
 * commands rather than the normal PWRI commands. GFXWS commands are    *
 * tracked with the graphics credit counters.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_page_b_u {
	bdrkreg_t	pi_gfx_page_b_regval;
	struct  {
		bdrkreg_t	gpb_rsvd_1                :	17;
                bdrkreg_t       gpb_gfx_page_addr         :     23;
                bdrkreg_t       gpb_en_gfx_page           :      1;
                bdrkreg_t       gpb_rsvd                  :     23;
	} pi_gfx_page_b_fld_s;
} pi_gfx_page_b_u_t;

#else

typedef union pi_gfx_page_b_u {
	bdrkreg_t	pi_gfx_page_b_regval;
	struct	{
		bdrkreg_t	gpb_rsvd		  :	23;
		bdrkreg_t	gpb_en_gfx_page		  :	 1;
		bdrkreg_t	gpb_gfx_page_addr	  :	23;
		bdrkreg_t	gpb_rsvd_1		  :	17;
	} pi_gfx_page_b_fld_s;
} pi_gfx_page_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. This register         *
 * counts graphics credits. This counter is decremented for each        *
 * doubleword sent to graphics with GFXWS or GFXWL commands. It is      *
 * incremented for each doubleword acknowledge from graphics. When      *
 * this counter has a smaller value than the GFX_BIAS register,         *
 * SysWrRdy_L is deasserted, an interrupt is sent to the processor,     *
 * and SysWrRdy_L is allowed to be asserted again. This is the basic    *
 * mechanism for flow-controlling graphics writes.                      *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_credit_cntr_b_u {
	bdrkreg_t	pi_gfx_credit_cntr_b_regval;
	struct  {
		bdrkreg_t	gccb_gfx_credit_cntr      :	12;
		bdrkreg_t       gccb_rsvd                 :     52;
	} pi_gfx_credit_cntr_b_fld_s;
} pi_gfx_credit_cntr_b_u_t;

#else

typedef union pi_gfx_credit_cntr_b_u {
	bdrkreg_t	pi_gfx_credit_cntr_b_regval;
	struct	{
		bdrkreg_t	gccb_rsvd		  :	52;
		bdrkreg_t	gccb_gfx_credit_cntr	  :	12;
	} pi_gfx_credit_cntr_b_fld_s;
} pi_gfx_credit_cntr_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. When the graphics     *
 * credit counter is less than or equal to this value, a flow control   *
 * interrupt is sent.                                                   *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_bias_b_u {
	bdrkreg_t	pi_gfx_bias_b_regval;
	struct  {
		bdrkreg_t	gbb_gfx_bias              :	12;
		bdrkreg_t       gbb_rsvd                  :     52;
	} pi_gfx_bias_b_fld_s;
} pi_gfx_bias_b_u_t;

#else

typedef union pi_gfx_bias_b_u {
	bdrkreg_t	pi_gfx_bias_b_regval;
	struct	{
		bdrkreg_t	gbb_rsvd		  :	52;
		bdrkreg_t	gbb_gfx_bias		  :	12;
	} pi_gfx_bias_b_fld_s;
} pi_gfx_bias_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  There is one of these registers for each CPU. When     *
 * this counter reaches the value of the GFX_INT_CMP register, an       *
 * interrupt is sent to the associated processor. At each clock         *
 * cycle, the value in this register can be changed by any one of the   *
 * following actions:                                                   *
 * - Written by software.                                               *
 * - Loaded with the value of GFX_INT_CMP, when an interrupt, NMI, or   *
 * soft reset occurs, thus preventing an additional interrupt.          *
 * - Zeroed, when the GFX_CREDIT_CNTR rises above the bias value.       *
 * - Incremented (by one at each clock) for each clock that the         *
 * GFX_CREDIT_CNTR is less than or equal to zero.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_int_cntr_b_u {
	bdrkreg_t	pi_gfx_int_cntr_b_regval;
	struct  {
		bdrkreg_t	gicb_gfx_int_cntr         :	26;
		bdrkreg_t       gicb_rsvd                 :     38;
	} pi_gfx_int_cntr_b_fld_s;
} pi_gfx_int_cntr_b_u_t;

#else

typedef union pi_gfx_int_cntr_b_u {
	bdrkreg_t	pi_gfx_int_cntr_b_regval;
	struct	{
		bdrkreg_t	gicb_rsvd		  :	38;
		bdrkreg_t	gicb_gfx_int_cntr	  :	26;
	} pi_gfx_int_cntr_b_fld_s;
} pi_gfx_int_cntr_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. The value in this     *
 * register is loaded into the GFX_INT_CNTR register when an            *
 * interrupt, NMI, or soft reset is sent to the processor. The value    *
 * in this register is compared to the value of GFX_INT_CNTR and an     *
 * interrupt is sent when they become equal.                            *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_int_cmp_b_u {
	bdrkreg_t	pi_gfx_int_cmp_b_regval;
	struct  {
		bdrkreg_t	gicb_gfx_int_cmp          :	26;
		bdrkreg_t       gicb_rsvd                 :     38;
	} pi_gfx_int_cmp_b_fld_s;
} pi_gfx_int_cmp_b_u_t;

#else

typedef union pi_gfx_int_cmp_b_u {
	bdrkreg_t	pi_gfx_int_cmp_b_regval;
	struct	{
		bdrkreg_t	gicb_rsvd		  :	38;
		bdrkreg_t	gicb_gfx_int_cmp	  :	26;
	} pi_gfx_int_cmp_b_fld_s;
} pi_gfx_int_cmp_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  A read of this register returns all sources of         *
 * Bedrock Error Interrupts. Storing to the write-with-clear location   *
 * clears any bit for which a one appears on the data bus. Storing to   *
 * the writable location does a direct write to all unreserved bits     *
 * (except for MEM_UNC).                                                *
 * In Synergy mode, the processor that is the source of the command     *
 * that got an error is independent of the A or B SysAD bus. So in      *
 * Synergy mode, Synergy provides the source processor number in bit    *
 * 52 of the SysAD bus in all commands. The PI saves this in the RRB    *
 * or WRB entry, and uses that value to determine which error bit (A    *
 * or B) to set, as well as which ERR_STATUS and spool registers to     *
 * use, for all error types in this register that are specified as an   *
 * error to CPU_A or CPU_B.                                             *
 * This register is not cleared at reset.                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_int_pend_wr_u {
	bdrkreg_t	pi_err_int_pend_wr_regval;
	struct  {
		bdrkreg_t	eipw_spool_comp_b         :	 1;
                bdrkreg_t       eipw_spool_comp_a         :      1;
                bdrkreg_t       eipw_spurious_b           :      1;
                bdrkreg_t       eipw_spurious_a           :      1;
                bdrkreg_t       eipw_wrb_terr_b           :      1;
                bdrkreg_t       eipw_wrb_terr_a           :      1;
                bdrkreg_t       eipw_wrb_werr_b           :      1;
                bdrkreg_t       eipw_wrb_werr_a           :      1;
                bdrkreg_t       eipw_sysstate_par_b       :      1;
                bdrkreg_t       eipw_sysstate_par_a       :      1;
                bdrkreg_t       eipw_sysad_data_ecc_b     :      1;
                bdrkreg_t       eipw_sysad_data_ecc_a     :      1;
                bdrkreg_t       eipw_sysad_addr_ecc_b     :      1;
                bdrkreg_t       eipw_sysad_addr_ecc_a     :      1;
                bdrkreg_t       eipw_syscmd_data_par_b    :      1;
                bdrkreg_t       eipw_syscmd_data_par_a    :      1;
                bdrkreg_t       eipw_syscmd_addr_par_b    :      1;
                bdrkreg_t       eipw_syscmd_addr_par_a    :      1;
                bdrkreg_t       eipw_spool_err_b          :      1;
                bdrkreg_t       eipw_spool_err_a          :      1;
                bdrkreg_t       eipw_ue_uncached_b        :      1;
                bdrkreg_t       eipw_ue_uncached_a        :      1;
                bdrkreg_t       eipw_sysstate_tag_b       :      1;
                bdrkreg_t       eipw_sysstate_tag_a       :      1;
                bdrkreg_t       eipw_mem_unc              :      1;
                bdrkreg_t       eipw_sysad_bad_data_b     :      1;
                bdrkreg_t       eipw_sysad_bad_data_a     :      1;
                bdrkreg_t       eipw_ue_cached_b          :      1;
                bdrkreg_t       eipw_ue_cached_a          :      1;
                bdrkreg_t       eipw_pkt_len_err_b        :      1;
                bdrkreg_t       eipw_pkt_len_err_a        :      1;
                bdrkreg_t       eipw_irb_err_b            :      1;
                bdrkreg_t       eipw_irb_err_a            :      1;
                bdrkreg_t       eipw_irb_timeout_b        :      1;
                bdrkreg_t       eipw_irb_timeout_a        :      1;
                bdrkreg_t       eipw_rsvd                 :     29;
	} pi_err_int_pend_wr_fld_s;
} pi_err_int_pend_wr_u_t;

#else

typedef union pi_err_int_pend_wr_u {
	bdrkreg_t	pi_err_int_pend_wr_regval;
	struct	{
		bdrkreg_t	eipw_rsvd		  :	29;
		bdrkreg_t	eipw_irb_timeout_a	  :	 1;
		bdrkreg_t	eipw_irb_timeout_b	  :	 1;
		bdrkreg_t	eipw_irb_err_a		  :	 1;
		bdrkreg_t	eipw_irb_err_b		  :	 1;
		bdrkreg_t	eipw_pkt_len_err_a	  :	 1;
		bdrkreg_t	eipw_pkt_len_err_b	  :	 1;
		bdrkreg_t	eipw_ue_cached_a	  :	 1;
		bdrkreg_t	eipw_ue_cached_b	  :	 1;
		bdrkreg_t	eipw_sysad_bad_data_a	  :	 1;
		bdrkreg_t	eipw_sysad_bad_data_b	  :	 1;
		bdrkreg_t	eipw_mem_unc		  :	 1;
		bdrkreg_t	eipw_sysstate_tag_a	  :	 1;
		bdrkreg_t	eipw_sysstate_tag_b	  :	 1;
		bdrkreg_t	eipw_ue_uncached_a	  :	 1;
		bdrkreg_t	eipw_ue_uncached_b	  :	 1;
		bdrkreg_t	eipw_spool_err_a	  :	 1;
		bdrkreg_t	eipw_spool_err_b	  :	 1;
		bdrkreg_t	eipw_syscmd_addr_par_a	  :	 1;
		bdrkreg_t	eipw_syscmd_addr_par_b	  :	 1;
		bdrkreg_t	eipw_syscmd_data_par_a	  :	 1;
		bdrkreg_t	eipw_syscmd_data_par_b	  :	 1;
		bdrkreg_t	eipw_sysad_addr_ecc_a	  :	 1;
		bdrkreg_t	eipw_sysad_addr_ecc_b	  :	 1;
		bdrkreg_t	eipw_sysad_data_ecc_a	  :	 1;
		bdrkreg_t	eipw_sysad_data_ecc_b	  :	 1;
		bdrkreg_t	eipw_sysstate_par_a	  :	 1;
		bdrkreg_t	eipw_sysstate_par_b	  :	 1;
		bdrkreg_t	eipw_wrb_werr_a		  :	 1;
		bdrkreg_t	eipw_wrb_werr_b		  :	 1;
		bdrkreg_t	eipw_wrb_terr_a		  :	 1;
		bdrkreg_t	eipw_wrb_terr_b		  :	 1;
		bdrkreg_t	eipw_spurious_a		  :	 1;
		bdrkreg_t	eipw_spurious_b		  :	 1;
		bdrkreg_t	eipw_spool_comp_a	  :	 1;
		bdrkreg_t	eipw_spool_comp_b	  :	 1;
	} pi_err_int_pend_wr_fld_s;
} pi_err_int_pend_wr_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  A read of this register returns all sources of         *
 * Bedrock Error Interrupts. Storing to the write-with-clear location   *
 * clears any bit for which a one appears on the data bus. Storing to   *
 * the writable location does a direct write to all unreserved bits     *
 * (except for MEM_UNC).                                                *
 * In Synergy mode, the processor that is the source of the command     *
 * that got an error is independent of the A or B SysAD bus. So in      *
 * Synergy mode, Synergy provides the source processor number in bit    *
 * 52 of the SysAD bus in all commands. The PI saves this in the RRB    *
 * or WRB entry, and uses that value to determine which error bit (A    *
 * or B) to set, as well as which ERR_STATUS and spool registers to     *
 * use, for all error types in this register that are specified as an   *
 * error to CPU_A or CPU_B.                                             *
 * This register is not cleared at reset.                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_int_pend_u {
	bdrkreg_t	pi_err_int_pend_regval;
	struct  {
		bdrkreg_t	eip_spool_comp_b          :	 1;
                bdrkreg_t       eip_spool_comp_a          :      1;
                bdrkreg_t       eip_spurious_b            :      1;
                bdrkreg_t       eip_spurious_a            :      1;
                bdrkreg_t       eip_wrb_terr_b            :      1;
                bdrkreg_t       eip_wrb_terr_a            :      1;
                bdrkreg_t       eip_wrb_werr_b            :      1;
                bdrkreg_t       eip_wrb_werr_a            :      1;
                bdrkreg_t       eip_sysstate_par_b        :      1;
                bdrkreg_t       eip_sysstate_par_a        :      1;
                bdrkreg_t       eip_sysad_data_ecc_b      :      1;
                bdrkreg_t       eip_sysad_data_ecc_a      :      1;
                bdrkreg_t       eip_sysad_addr_ecc_b      :      1;
                bdrkreg_t       eip_sysad_addr_ecc_a      :      1;
                bdrkreg_t       eip_syscmd_data_par_b     :      1;
                bdrkreg_t       eip_syscmd_data_par_a     :      1;
                bdrkreg_t       eip_syscmd_addr_par_b     :      1;
                bdrkreg_t       eip_syscmd_addr_par_a     :      1;
                bdrkreg_t       eip_spool_err_b           :      1;
                bdrkreg_t       eip_spool_err_a           :      1;
                bdrkreg_t       eip_ue_uncached_b         :      1;
                bdrkreg_t       eip_ue_uncached_a         :      1;
                bdrkreg_t       eip_sysstate_tag_b        :      1;
                bdrkreg_t       eip_sysstate_tag_a        :      1;
                bdrkreg_t       eip_mem_unc               :      1;
                bdrkreg_t       eip_sysad_bad_data_b      :      1;
                bdrkreg_t       eip_sysad_bad_data_a      :      1;
                bdrkreg_t       eip_ue_cached_b           :      1;
                bdrkreg_t       eip_ue_cached_a           :      1;
                bdrkreg_t       eip_pkt_len_err_b         :      1;
                bdrkreg_t       eip_pkt_len_err_a         :      1;
                bdrkreg_t       eip_irb_err_b             :      1;
                bdrkreg_t       eip_irb_err_a             :      1;
                bdrkreg_t       eip_irb_timeout_b         :      1;
                bdrkreg_t       eip_irb_timeout_a         :      1;
                bdrkreg_t       eip_rsvd                  :     29;
	} pi_err_int_pend_fld_s;
} pi_err_int_pend_u_t;

#else

typedef union pi_err_int_pend_u {
	bdrkreg_t	pi_err_int_pend_regval;
	struct	{
		bdrkreg_t	eip_rsvd		  :	29;
		bdrkreg_t	eip_irb_timeout_a	  :	 1;
		bdrkreg_t	eip_irb_timeout_b	  :	 1;
		bdrkreg_t	eip_irb_err_a		  :	 1;
		bdrkreg_t	eip_irb_err_b		  :	 1;
		bdrkreg_t	eip_pkt_len_err_a	  :	 1;
		bdrkreg_t	eip_pkt_len_err_b	  :	 1;
		bdrkreg_t	eip_ue_cached_a		  :	 1;
		bdrkreg_t	eip_ue_cached_b		  :	 1;
		bdrkreg_t	eip_sysad_bad_data_a	  :	 1;
		bdrkreg_t	eip_sysad_bad_data_b	  :	 1;
		bdrkreg_t	eip_mem_unc		  :	 1;
		bdrkreg_t	eip_sysstate_tag_a	  :	 1;
		bdrkreg_t	eip_sysstate_tag_b	  :	 1;
		bdrkreg_t	eip_ue_uncached_a	  :	 1;
		bdrkreg_t	eip_ue_uncached_b	  :	 1;
		bdrkreg_t	eip_spool_err_a		  :	 1;
		bdrkreg_t	eip_spool_err_b		  :	 1;
		bdrkreg_t	eip_syscmd_addr_par_a	  :	 1;
		bdrkreg_t	eip_syscmd_addr_par_b	  :	 1;
		bdrkreg_t	eip_syscmd_data_par_a	  :	 1;
		bdrkreg_t	eip_syscmd_data_par_b	  :	 1;
		bdrkreg_t	eip_sysad_addr_ecc_a	  :	 1;
		bdrkreg_t	eip_sysad_addr_ecc_b	  :	 1;
		bdrkreg_t	eip_sysad_data_ecc_a	  :	 1;
		bdrkreg_t	eip_sysad_data_ecc_b	  :	 1;
		bdrkreg_t	eip_sysstate_par_a	  :	 1;
		bdrkreg_t	eip_sysstate_par_b	  :	 1;
		bdrkreg_t	eip_wrb_werr_a		  :	 1;
		bdrkreg_t	eip_wrb_werr_b		  :	 1;
		bdrkreg_t	eip_wrb_terr_a		  :	 1;
		bdrkreg_t	eip_wrb_terr_b		  :	 1;
		bdrkreg_t	eip_spurious_a		  :	 1;
		bdrkreg_t	eip_spurious_b		  :	 1;
		bdrkreg_t	eip_spool_comp_a	  :	 1;
		bdrkreg_t	eip_spool_comp_b	  :	 1;
	} pi_err_int_pend_fld_s;
} pi_err_int_pend_u_t;

#endif





/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. This read/write       *
 * register masks the contents of ERR_INT_PEND to determine which       *
 * conditions cause a Level-6 interrupt to CPU_A or CPU_B. A bit set    *
 * allows the interrupt. Only one processor in a Bedrock should         *
 * enable the Memory/Directory Uncorrectable Error bit.                 *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_int_mask_a_u {
	bdrkreg_t	pi_err_int_mask_a_regval;
	struct  {
		bdrkreg_t	eima_mask                 :	35;
		bdrkreg_t       eima_rsvd                 :     29;
	} pi_err_int_mask_a_fld_s;
} pi_err_int_mask_a_u_t;

#else

typedef union pi_err_int_mask_a_u {
	bdrkreg_t	pi_err_int_mask_a_regval;
	struct	{
		bdrkreg_t	eima_rsvd		  :	29;
		bdrkreg_t	eima_mask		  :	35;
	} pi_err_int_mask_a_fld_s;
} pi_err_int_mask_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. This read/write       *
 * register masks the contents of ERR_INT_PEND to determine which       *
 * conditions cause a Level-6 interrupt to CPU_A or CPU_B. A bit set    *
 * allows the interrupt. Only one processor in a Bedrock should         *
 * enable the Memory/Directory Uncorrectable Error bit.                 *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_int_mask_b_u {
	bdrkreg_t	pi_err_int_mask_b_regval;
	struct  {
		bdrkreg_t	eimb_mask                 :	35;
		bdrkreg_t       eimb_rsvd                 :     29;
	} pi_err_int_mask_b_fld_s;
} pi_err_int_mask_b_u_t;

#else

typedef union pi_err_int_mask_b_u {
	bdrkreg_t	pi_err_int_mask_b_regval;
	struct	{
		bdrkreg_t	eimb_rsvd		  :	29;
		bdrkreg_t	eimb_mask		  :	35;
	} pi_err_int_mask_b_fld_s;
} pi_err_int_mask_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  There is one of these registers for each CPU. This     *
 * register is the address of the next write to the error stack. This   *
 * register is incremented after each such write. Only the low N bits   *
 * are incremented, where N is defined by the size of the error stack   *
 * specified in the ERR_STACK_SIZE register.                            *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_stack_addr_a_u {
	bdrkreg_t	pi_err_stack_addr_a_regval;
	struct  {
		bdrkreg_t	esaa_rsvd_1               :	 3;
                bdrkreg_t       esaa_addr                 :     30;
                bdrkreg_t       esaa_rsvd                 :     31;
	} pi_err_stack_addr_a_fld_s;
} pi_err_stack_addr_a_u_t;

#else

typedef union pi_err_stack_addr_a_u {
	bdrkreg_t	pi_err_stack_addr_a_regval;
	struct	{
		bdrkreg_t	esaa_rsvd		  :	31;
		bdrkreg_t	esaa_addr		  :	30;
		bdrkreg_t	esaa_rsvd_1		  :	 3;
	} pi_err_stack_addr_a_fld_s;
} pi_err_stack_addr_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  There is one of these registers for each CPU. This     *
 * register is the address of the next write to the error stack. This   *
 * register is incremented after each such write. Only the low N bits   *
 * are incremented, where N is defined by the size of the error stack   *
 * specified in the ERR_STACK_SIZE register.                            *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_stack_addr_b_u {
	bdrkreg_t	pi_err_stack_addr_b_regval;
	struct  {
		bdrkreg_t	esab_rsvd_1               :	 3;
                bdrkreg_t       esab_addr                 :     30;
                bdrkreg_t       esab_rsvd                 :     31;
	} pi_err_stack_addr_b_fld_s;
} pi_err_stack_addr_b_u_t;

#else

typedef union pi_err_stack_addr_b_u {
	bdrkreg_t	pi_err_stack_addr_b_regval;
	struct	{
		bdrkreg_t	esab_rsvd		  :	31;
		bdrkreg_t	esab_addr		  :	30;
		bdrkreg_t	esab_rsvd_1		  :	 3;
	} pi_err_stack_addr_b_fld_s;
} pi_err_stack_addr_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  Sets the size (number of 64-bit entries) in the        *
 * error stack that is spooled to local memory when an error occurs.    *
 * Table16 defines the format of each entry in the spooled error        *
 * stack.                                                               *
 * This register is not reset by a soft reset.                          *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_stack_size_u {
	bdrkreg_t	pi_err_stack_size_regval;
	struct  {
		bdrkreg_t	ess_size                  :	 4;
                bdrkreg_t       ess_rsvd                  :     60;
	} pi_err_stack_size_fld_s;
} pi_err_stack_size_u_t;

#else

typedef union pi_err_stack_size_u {
	bdrkreg_t	pi_err_stack_size_regval;
	struct	{
		bdrkreg_t	ess_rsvd		  :	60;
		bdrkreg_t	ess_size		  :	 4;
	} pi_err_stack_size_fld_s;
} pi_err_stack_size_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_A and ERR_STATUS1_A registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status0_a_u {
	bdrkreg_t	pi_err_status0_a_regval;
	struct  {
		bdrkreg_t	esa_error_type            :	 3;
                bdrkreg_t       esa_proc_req_num          :      3;
                bdrkreg_t       esa_supplemental          :     11;
                bdrkreg_t       esa_cmd                   :      8;
                bdrkreg_t       esa_addr                  :     37;
                bdrkreg_t       esa_over_run              :      1;
                bdrkreg_t       esa_valid                 :      1;
	} pi_err_status0_a_fld_s;
} pi_err_status0_a_u_t;

#else

typedef union pi_err_status0_a_u {
	bdrkreg_t	pi_err_status0_a_regval;
	struct	{
		bdrkreg_t	esa_valid		  :	 1;
		bdrkreg_t	esa_over_run		  :	 1;
		bdrkreg_t	esa_addr		  :	37;
		bdrkreg_t	esa_cmd			  :	 8;
		bdrkreg_t	esa_supplemental	  :	11;
		bdrkreg_t	esa_proc_req_num	  :	 3;
		bdrkreg_t	esa_error_type		  :	 3;
	} pi_err_status0_a_fld_s;
} pi_err_status0_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_A and ERR_STATUS1_A registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status0_a_clr_u {
	bdrkreg_t	pi_err_status0_a_clr_regval;
	struct  {
		bdrkreg_t	esac_error_type           :	 3;
                bdrkreg_t       esac_proc_req_num         :      3;
                bdrkreg_t       esac_supplemental         :     11;
                bdrkreg_t       esac_cmd                  :      8;
                bdrkreg_t       esac_addr                 :     37;
                bdrkreg_t       esac_over_run             :      1;
                bdrkreg_t       esac_valid                :      1;
	} pi_err_status0_a_clr_fld_s;
} pi_err_status0_a_clr_u_t;

#else

typedef union pi_err_status0_a_clr_u {
	bdrkreg_t	pi_err_status0_a_clr_regval;
	struct	{
		bdrkreg_t	esac_valid		  :	 1;
		bdrkreg_t	esac_over_run		  :	 1;
		bdrkreg_t	esac_addr		  :	37;
		bdrkreg_t	esac_cmd		  :	 8;
		bdrkreg_t	esac_supplemental	  :	11;
		bdrkreg_t	esac_proc_req_num	  :	 3;
		bdrkreg_t	esac_error_type		  :	 3;
	} pi_err_status0_a_clr_fld_s;
} pi_err_status0_a_clr_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_A and ERR_STATUS1_A registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status1_a_u {
	bdrkreg_t	pi_err_status1_a_regval;
	struct  {
		bdrkreg_t	esa_spool_count           :	21;
                bdrkreg_t       esa_time_out_count        :      8;
                bdrkreg_t       esa_inval_count           :     10;
                bdrkreg_t       esa_crb_num               :      3;
                bdrkreg_t       esa_wrb                   :      1;
                bdrkreg_t       esa_e_bits                :      2;
                bdrkreg_t       esa_t_bit                 :      1;
                bdrkreg_t       esa_i_bit                 :      1;
                bdrkreg_t       esa_h_bit                 :      1;
                bdrkreg_t       esa_w_bit                 :      1;
                bdrkreg_t       esa_a_bit                 :      1;
                bdrkreg_t       esa_r_bit                 :      1;
                bdrkreg_t       esa_v_bit                 :      1;
                bdrkreg_t       esa_p_bit                 :      1;
                bdrkreg_t       esa_source                :     11;
	} pi_err_status1_a_fld_s;
} pi_err_status1_a_u_t;

#else

typedef union pi_err_status1_a_u {
	bdrkreg_t	pi_err_status1_a_regval;
	struct	{
		bdrkreg_t	esa_source		  :	11;
		bdrkreg_t	esa_p_bit		  :	 1;
		bdrkreg_t	esa_v_bit		  :	 1;
		bdrkreg_t	esa_r_bit		  :	 1;
		bdrkreg_t	esa_a_bit		  :	 1;
		bdrkreg_t	esa_w_bit		  :	 1;
		bdrkreg_t	esa_h_bit		  :	 1;
		bdrkreg_t	esa_i_bit		  :	 1;
		bdrkreg_t	esa_t_bit		  :	 1;
		bdrkreg_t	esa_e_bits		  :	 2;
		bdrkreg_t	esa_wrb			  :	 1;
		bdrkreg_t	esa_crb_num		  :	 3;
		bdrkreg_t	esa_inval_count		  :	10;
		bdrkreg_t	esa_time_out_count	  :	 8;
		bdrkreg_t	esa_spool_count		  :	21;
	} pi_err_status1_a_fld_s;
} pi_err_status1_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_A and ERR_STATUS1_A registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status1_a_clr_u {
	bdrkreg_t	pi_err_status1_a_clr_regval;
	struct  {
		bdrkreg_t	esac_spool_count          :	21;
                bdrkreg_t       esac_time_out_count       :      8;
                bdrkreg_t       esac_inval_count          :     10;
                bdrkreg_t       esac_crb_num              :      3;
                bdrkreg_t       esac_wrb                  :      1;
                bdrkreg_t       esac_e_bits               :      2;
                bdrkreg_t       esac_t_bit                :      1;
                bdrkreg_t       esac_i_bit                :      1;
                bdrkreg_t       esac_h_bit                :      1;
                bdrkreg_t       esac_w_bit                :      1;
                bdrkreg_t       esac_a_bit                :      1;
                bdrkreg_t       esac_r_bit                :      1;
                bdrkreg_t       esac_v_bit                :      1;
                bdrkreg_t       esac_p_bit                :      1;
                bdrkreg_t       esac_source               :     11;
	} pi_err_status1_a_clr_fld_s;
} pi_err_status1_a_clr_u_t;

#else

typedef union pi_err_status1_a_clr_u {
	bdrkreg_t	pi_err_status1_a_clr_regval;
	struct	{
		bdrkreg_t	esac_source		  :	11;
		bdrkreg_t	esac_p_bit		  :	 1;
		bdrkreg_t	esac_v_bit		  :	 1;
		bdrkreg_t	esac_r_bit		  :	 1;
		bdrkreg_t	esac_a_bit		  :	 1;
		bdrkreg_t	esac_w_bit		  :	 1;
		bdrkreg_t	esac_h_bit		  :	 1;
		bdrkreg_t	esac_i_bit		  :	 1;
		bdrkreg_t	esac_t_bit		  :	 1;
		bdrkreg_t	esac_e_bits		  :	 2;
		bdrkreg_t	esac_wrb		  :	 1;
		bdrkreg_t	esac_crb_num		  :	 3;
		bdrkreg_t	esac_inval_count	  :	10;
		bdrkreg_t	esac_time_out_count	  :	 8;
		bdrkreg_t	esac_spool_count	  :	21;
	} pi_err_status1_a_clr_fld_s;
} pi_err_status1_a_clr_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_B and ERR_STATUS1_B registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status0_b_u {
	bdrkreg_t	pi_err_status0_b_regval;
	struct  {
		bdrkreg_t	esb_error_type            :	 3;
                bdrkreg_t       esb_proc_request_number   :      3;
                bdrkreg_t       esb_supplemental          :     11;
                bdrkreg_t       esb_cmd                   :      8;
                bdrkreg_t       esb_addr                  :     37;
                bdrkreg_t       esb_over_run              :      1;
                bdrkreg_t       esb_valid                 :      1;
	} pi_err_status0_b_fld_s;
} pi_err_status0_b_u_t;

#else

typedef union pi_err_status0_b_u {
	bdrkreg_t	pi_err_status0_b_regval;
	struct	{
		bdrkreg_t	esb_valid		  :	 1;
		bdrkreg_t	esb_over_run		  :	 1;
		bdrkreg_t	esb_addr		  :	37;
		bdrkreg_t	esb_cmd			  :	 8;
		bdrkreg_t	esb_supplemental	  :	11;
		bdrkreg_t	esb_proc_request_number	  :	 3;
		bdrkreg_t	esb_error_type		  :	 3;
	} pi_err_status0_b_fld_s;
} pi_err_status0_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_B and ERR_STATUS1_B registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status0_b_clr_u {
	bdrkreg_t	pi_err_status0_b_clr_regval;
	struct  {
		bdrkreg_t	esbc_error_type           :	 3;
                bdrkreg_t       esbc_proc_request_number  :      3;
                bdrkreg_t       esbc_supplemental         :     11;
                bdrkreg_t       esbc_cmd                  :      8;
                bdrkreg_t       esbc_addr                 :     37;
                bdrkreg_t       esbc_over_run             :      1;
                bdrkreg_t       esbc_valid                :      1;
	} pi_err_status0_b_clr_fld_s;
} pi_err_status0_b_clr_u_t;

#else

typedef union pi_err_status0_b_clr_u {
	bdrkreg_t	pi_err_status0_b_clr_regval;
	struct	{
		bdrkreg_t	esbc_valid		  :	 1;
		bdrkreg_t	esbc_over_run		  :	 1;
		bdrkreg_t	esbc_addr		  :	37;
		bdrkreg_t	esbc_cmd		  :	 8;
		bdrkreg_t	esbc_supplemental	  :	11;
		bdrkreg_t	esbc_proc_request_number  :	 3;
		bdrkreg_t	esbc_error_type		  :	 3;
	} pi_err_status0_b_clr_fld_s;
} pi_err_status0_b_clr_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_B and ERR_STATUS1_B registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status1_b_u {
	bdrkreg_t	pi_err_status1_b_regval;
	struct  {
		bdrkreg_t	esb_spool_count           :	21;
                bdrkreg_t       esb_time_out_count        :      8;
                bdrkreg_t       esb_inval_count           :     10;
                bdrkreg_t       esb_crb_num               :      3;
                bdrkreg_t       esb_wrb                   :      1;
                bdrkreg_t       esb_e_bits                :      2;
                bdrkreg_t       esb_t_bit                 :      1;
                bdrkreg_t       esb_i_bit                 :      1;
                bdrkreg_t       esb_h_bit                 :      1;
                bdrkreg_t       esb_w_bit                 :      1;
                bdrkreg_t       esb_a_bit                 :      1;
                bdrkreg_t       esb_r_bit                 :      1;
                bdrkreg_t       esb_v_bit                 :      1;
                bdrkreg_t       esb_p_bit                 :      1;
                bdrkreg_t       esb_source                :     11;
	} pi_err_status1_b_fld_s;
} pi_err_status1_b_u_t;

#else

typedef union pi_err_status1_b_u {
	bdrkreg_t	pi_err_status1_b_regval;
	struct	{
		bdrkreg_t	esb_source		  :	11;
		bdrkreg_t	esb_p_bit		  :	 1;
		bdrkreg_t	esb_v_bit		  :	 1;
		bdrkreg_t	esb_r_bit		  :	 1;
		bdrkreg_t	esb_a_bit		  :	 1;
		bdrkreg_t	esb_w_bit		  :	 1;
		bdrkreg_t	esb_h_bit		  :	 1;
		bdrkreg_t	esb_i_bit		  :	 1;
		bdrkreg_t	esb_t_bit		  :	 1;
		bdrkreg_t	esb_e_bits		  :	 2;
		bdrkreg_t	esb_wrb			  :	 1;
		bdrkreg_t	esb_crb_num		  :	 3;
		bdrkreg_t	esb_inval_count		  :	10;
		bdrkreg_t	esb_time_out_count	  :	 8;
		bdrkreg_t	esb_spool_count		  :	21;
	} pi_err_status1_b_fld_s;
} pi_err_status1_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. Writing this register with   *
 * the Write-clear address (with any data) clears both the              *
 * ERR_STATUS0_B and ERR_STATUS1_B registers.                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_status1_b_clr_u {
	bdrkreg_t	pi_err_status1_b_clr_regval;
	struct  {
		bdrkreg_t	esbc_spool_count          :	21;
                bdrkreg_t       esbc_time_out_count       :      8;
                bdrkreg_t       esbc_inval_count          :     10;
                bdrkreg_t       esbc_crb_num              :      3;
                bdrkreg_t       esbc_wrb                  :      1;
                bdrkreg_t       esbc_e_bits               :      2;
                bdrkreg_t       esbc_t_bit                :      1;
                bdrkreg_t       esbc_i_bit                :      1;
                bdrkreg_t       esbc_h_bit                :      1;
                bdrkreg_t       esbc_w_bit                :      1;
                bdrkreg_t       esbc_a_bit                :      1;
                bdrkreg_t       esbc_r_bit                :      1;
                bdrkreg_t       esbc_v_bit                :      1;
                bdrkreg_t       esbc_p_bit                :      1;
                bdrkreg_t       esbc_source               :     11;
	} pi_err_status1_b_clr_fld_s;
} pi_err_status1_b_clr_u_t;

#else

typedef union pi_err_status1_b_clr_u {
	bdrkreg_t	pi_err_status1_b_clr_regval;
	struct	{
		bdrkreg_t	esbc_source		  :	11;
		bdrkreg_t	esbc_p_bit		  :	 1;
		bdrkreg_t	esbc_v_bit		  :	 1;
		bdrkreg_t	esbc_r_bit		  :	 1;
		bdrkreg_t	esbc_a_bit		  :	 1;
		bdrkreg_t	esbc_w_bit		  :	 1;
		bdrkreg_t	esbc_h_bit		  :	 1;
		bdrkreg_t	esbc_i_bit		  :	 1;
		bdrkreg_t	esbc_t_bit		  :	 1;
		bdrkreg_t	esbc_e_bits		  :	 2;
		bdrkreg_t	esbc_wrb		  :	 1;
		bdrkreg_t	esbc_crb_num		  :	 3;
		bdrkreg_t	esbc_inval_count	  :	10;
		bdrkreg_t	esbc_time_out_count	  :	 8;
		bdrkreg_t	esbc_spool_count	  :	21;
	} pi_err_status1_b_clr_fld_s;
} pi_err_status1_b_clr_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_spool_cmp_a_u {
	bdrkreg_t	pi_spool_cmp_a_regval;
	struct  {
		bdrkreg_t	sca_compare               :	20;
		bdrkreg_t       sca_rsvd                  :     44;
	} pi_spool_cmp_a_fld_s;
} pi_spool_cmp_a_u_t;

#else

typedef union pi_spool_cmp_a_u {
	bdrkreg_t	pi_spool_cmp_a_regval;
	struct	{
		bdrkreg_t	sca_rsvd		  :	44;
		bdrkreg_t	sca_compare		  :	20;
	} pi_spool_cmp_a_fld_s;
} pi_spool_cmp_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_spool_cmp_b_u {
	bdrkreg_t	pi_spool_cmp_b_regval;
	struct  {
		bdrkreg_t	scb_compare               :	20;
		bdrkreg_t       scb_rsvd                  :     44;
	} pi_spool_cmp_b_fld_s;
} pi_spool_cmp_b_u_t;

#else

typedef union pi_spool_cmp_b_u {
	bdrkreg_t	pi_spool_cmp_b_regval;
	struct	{
		bdrkreg_t	scb_rsvd		  :	44;
		bdrkreg_t	scb_compare		  :	20;
	} pi_spool_cmp_b_fld_s;
} pi_spool_cmp_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. A timeout can be      *
 * forced by writing one(s).                                            *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_crb_timeout_a_u {
	bdrkreg_t	pi_crb_timeout_a_regval;
	struct  {
		bdrkreg_t	cta_rrb                   :	 4;
                bdrkreg_t       cta_wrb                   :      8;
                bdrkreg_t       cta_rsvd                  :     52;
	} pi_crb_timeout_a_fld_s;
} pi_crb_timeout_a_u_t;

#else

typedef union pi_crb_timeout_a_u {
	bdrkreg_t	pi_crb_timeout_a_regval;
	struct	{
		bdrkreg_t	cta_rsvd		  :	52;
		bdrkreg_t	cta_wrb			  :	 8;
		bdrkreg_t	cta_rrb			  :	 4;
	} pi_crb_timeout_a_fld_s;
} pi_crb_timeout_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. A timeout can be      *
 * forced by writing one(s).                                            *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_crb_timeout_b_u {
	bdrkreg_t	pi_crb_timeout_b_regval;
	struct  {
		bdrkreg_t	ctb_rrb                   :	 4;
                bdrkreg_t       ctb_wrb                   :      8;
                bdrkreg_t       ctb_rsvd                  :     52;
	} pi_crb_timeout_b_fld_s;
} pi_crb_timeout_b_u_t;

#else

typedef union pi_crb_timeout_b_u {
	bdrkreg_t	pi_crb_timeout_b_regval;
	struct	{
		bdrkreg_t	ctb_rsvd		  :	52;
		bdrkreg_t	ctb_wrb			  :	 8;
		bdrkreg_t	ctb_rrb			  :	 4;
	} pi_crb_timeout_b_fld_s;
} pi_crb_timeout_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register controls error checking and forwarding of SysAD       *
 * errors.                                                              *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_sysad_errchk_en_u {
	bdrkreg_t	pi_sysad_errchk_en_regval;
	struct  {
		bdrkreg_t	see_ecc_gen_en            :	 1;
                bdrkreg_t       see_qual_gen_en           :      1;
                bdrkreg_t       see_sadp_chk_en           :      1;
                bdrkreg_t       see_cmdp_chk_en           :      1;
                bdrkreg_t       see_state_chk_en          :      1;
                bdrkreg_t       see_qual_chk_en           :      1;
                bdrkreg_t       see_rsvd                  :     58;
	} pi_sysad_errchk_en_fld_s;
} pi_sysad_errchk_en_u_t;

#else

typedef union pi_sysad_errchk_en_u {
	bdrkreg_t	pi_sysad_errchk_en_regval;
	struct	{
		bdrkreg_t	see_rsvd		  :	58;
		bdrkreg_t	see_qual_chk_en		  :	 1;
		bdrkreg_t	see_state_chk_en	  :	 1;
		bdrkreg_t	see_cmdp_chk_en		  :	 1;
		bdrkreg_t	see_sadp_chk_en		  :	 1;
		bdrkreg_t	see_qual_gen_en		  :	 1;
		bdrkreg_t	see_ecc_gen_en		  :	 1;
	} pi_sysad_errchk_en_fld_s;
} pi_sysad_errchk_en_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. If any bit in this    *
 * register is set, then whenever reply data arrives with the UE        *
 * (uncorrectable error) indication set, the check-bits that are        *
 * generated and sent to the SysAD will be inverted corresponding to    *
 * the bits set in the register. This will also prevent the assertion   *
 * of the data quality indicator.                                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_force_bad_check_bit_a_u {
	bdrkreg_t	pi_force_bad_check_bit_a_regval;
	struct  {
		bdrkreg_t	fbcba_bad_check_bit       :	 8;
		bdrkreg_t       fbcba_rsvd                :     56;
	} pi_force_bad_check_bit_a_fld_s;
} pi_force_bad_check_bit_a_u_t;

#else

typedef union pi_force_bad_check_bit_a_u {
	bdrkreg_t	pi_force_bad_check_bit_a_regval;
	struct	{
		bdrkreg_t	fbcba_rsvd		  :	56;
		bdrkreg_t	fbcba_bad_check_bit	  :	 8;
	} pi_force_bad_check_bit_a_fld_s;
} pi_force_bad_check_bit_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. If any bit in this    *
 * register is set, then whenever reply data arrives with the UE        *
 * (uncorrectable error) indication set, the check-bits that are        *
 * generated and sent to the SysAD will be inverted corresponding to    *
 * the bits set in the register. This will also prevent the assertion   *
 * of the data quality indicator.                                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_force_bad_check_bit_b_u {
	bdrkreg_t	pi_force_bad_check_bit_b_regval;
	struct  {
		bdrkreg_t	fbcbb_bad_check_bit       :	 8;
		bdrkreg_t       fbcbb_rsvd                :     56;
	} pi_force_bad_check_bit_b_fld_s;
} pi_force_bad_check_bit_b_u_t;

#else

typedef union pi_force_bad_check_bit_b_u {
	bdrkreg_t	pi_force_bad_check_bit_b_regval;
	struct	{
		bdrkreg_t	fbcbb_rsvd		  :	56;
		bdrkreg_t	fbcbb_bad_check_bit	  :	 8;
	} pi_force_bad_check_bit_b_fld_s;
} pi_force_bad_check_bit_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. When a counter is     *
 * enabled, it increments each time a DNACK reply is received. The      *
 * counter is cleared when any other reply is received. The register    *
 * is cleared when the CNT_EN bit is zero. If a DNACK reply is          *
 * received when the counter equals the value in the NACK_CMP           *
 * register, the counter is cleared, an error response is sent to the   *
 * CPU instead of a nack response, and the NACK_INT_A/B bit is set in   *
 * INT_PEND1.                                                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_nack_cnt_a_u {
	bdrkreg_t	pi_nack_cnt_a_regval;
	struct  {
		bdrkreg_t	nca_nack_cnt              :	20;
                bdrkreg_t       nca_cnt_en                :      1;
                bdrkreg_t       nca_rsvd                  :     43;
	} pi_nack_cnt_a_fld_s;
} pi_nack_cnt_a_u_t;

#else

typedef union pi_nack_cnt_a_u {
	bdrkreg_t	pi_nack_cnt_a_regval;
	struct	{
		bdrkreg_t	nca_rsvd		  :	43;
		bdrkreg_t	nca_cnt_en		  :	 1;
		bdrkreg_t	nca_nack_cnt		  :	20;
	} pi_nack_cnt_a_fld_s;
} pi_nack_cnt_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  There is one of these registers for each CPU. When a counter is     *
 * enabled, it increments each time a DNACK reply is received. The      *
 * counter is cleared when any other reply is received. The register    *
 * is cleared when the CNT_EN bit is zero. If a DNACK reply is          *
 * received when the counter equals the value in the NACK_CMP           *
 * register, the counter is cleared, an error response is sent to the   *
 * CPU instead of a nack response, and the NACK_INT_A/B bit is set in   *
 * INT_PEND1.                                                           *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_nack_cnt_b_u {
	bdrkreg_t	pi_nack_cnt_b_regval;
	struct  {
		bdrkreg_t	ncb_nack_cnt              :	20;
                bdrkreg_t       ncb_cnt_en                :      1;
                bdrkreg_t       ncb_rsvd                  :     43;
	} pi_nack_cnt_b_fld_s;
} pi_nack_cnt_b_u_t;

#else

typedef union pi_nack_cnt_b_u {
	bdrkreg_t	pi_nack_cnt_b_regval;
	struct	{
		bdrkreg_t	ncb_rsvd		  :	43;
		bdrkreg_t	ncb_cnt_en		  :	 1;
		bdrkreg_t	ncb_nack_cnt		  :	20;
	} pi_nack_cnt_b_fld_s;
} pi_nack_cnt_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  The setting of this register affects both CPUs on this PI.          *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_nack_cmp_u {
	bdrkreg_t	pi_nack_cmp_regval;
	struct  {
		bdrkreg_t	nc_nack_cmp               :	20;
		bdrkreg_t       nc_rsvd                   :     44;
	} pi_nack_cmp_fld_s;
} pi_nack_cmp_u_t;

#else

typedef union pi_nack_cmp_u {
	bdrkreg_t	pi_nack_cmp_regval;
	struct	{
		bdrkreg_t	nc_rsvd			  :	44;
		bdrkreg_t	nc_nack_cmp		  :	20;
	} pi_nack_cmp_fld_s;
} pi_nack_cmp_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register controls which errors are spooled. When a bit in      *
 * this register is set, the corresponding error is spooled. The        *
 * setting of this register affects both CPUs on this PI.               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_spool_mask_u {
	bdrkreg_t	pi_spool_mask_regval;
	struct  {
		bdrkreg_t	sm_access_err             :	 1;
                bdrkreg_t       sm_uncached_err           :      1;
                bdrkreg_t       sm_dir_err                :      1;
                bdrkreg_t       sm_timeout_err            :      1;
                bdrkreg_t       sm_poison_err             :      1;
                bdrkreg_t       sm_nack_oflow_err         :      1;
                bdrkreg_t       sm_rsvd                   :     58;
	} pi_spool_mask_fld_s;
} pi_spool_mask_u_t;

#else

typedef union pi_spool_mask_u {
	bdrkreg_t	pi_spool_mask_regval;
	struct	{
		bdrkreg_t	sm_rsvd			  :	58;
		bdrkreg_t	sm_nack_oflow_err	  :	 1;
		bdrkreg_t	sm_poison_err		  :	 1;
		bdrkreg_t	sm_timeout_err		  :	 1;
		bdrkreg_t	sm_dir_err		  :	 1;
		bdrkreg_t	sm_uncached_err		  :	 1;
		bdrkreg_t	sm_access_err		  :	 1;
	} pi_spool_mask_fld_s;
} pi_spool_mask_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. When the VALID bit is        *
 * zero, this register (along with SPURIOUS_HDR_1) will capture the     *
 * header of an incoming spurious message received from the XBar. A     *
 * spurious message is a message that does not match up with any of     *
 * the CRB entries. This is a read/write register, so it is cleared     *
 * by writing of all zeros.                                             *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_spurious_hdr_0_u {
	bdrkreg_t	pi_spurious_hdr_0_regval;
	struct  {
		bdrkreg_t	sh0_prev_valid_b          :	 1;
                bdrkreg_t       sh0_prev_valid_a          :      1;
                bdrkreg_t       sh0_rsvd                  :      4;
                bdrkreg_t       sh0_supplemental          :     11;
                bdrkreg_t       sh0_cmd                   :      8;
                bdrkreg_t       sh0_addr                  :     37;
                bdrkreg_t       sh0_tail                  :      1;
                bdrkreg_t       sh0_valid                 :      1;
	} pi_spurious_hdr_0_fld_s;
} pi_spurious_hdr_0_u_t;

#else

typedef union pi_spurious_hdr_0_u {
	bdrkreg_t	pi_spurious_hdr_0_regval;
	struct	{
		bdrkreg_t	sh0_valid		  :	 1;
		bdrkreg_t	sh0_tail		  :	 1;
		bdrkreg_t	sh0_addr		  :	37;
		bdrkreg_t	sh0_cmd			  :	 8;
		bdrkreg_t	sh0_supplemental	  :	11;
		bdrkreg_t	sh0_rsvd		  :	 4;
		bdrkreg_t	sh0_prev_valid_a	  :	 1;
		bdrkreg_t	sh0_prev_valid_b	  :	 1;
	} pi_spurious_hdr_0_fld_s;
} pi_spurious_hdr_0_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is not cleared at reset. When the VALID bit in        *
 * SPURIOUS_HDR_0 is zero, this register (along with SPURIOUS_HDR_0)    *
 * will capture the header of an incoming spurious message received     *
 * from the XBar. A spurious message is a message that does not match   *
 * up with any of the CRB entries. This is a read/write register, so    *
 * it is cleared by writing of all zeros.                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_spurious_hdr_1_u {
	bdrkreg_t	pi_spurious_hdr_1_regval;
	struct  {
		bdrkreg_t	sh1_rsvd                  :	53;
		bdrkreg_t       sh1_source                :     11;
	} pi_spurious_hdr_1_fld_s;
} pi_spurious_hdr_1_u_t;

#else

typedef union pi_spurious_hdr_1_u {
	bdrkreg_t	pi_spurious_hdr_1_regval;
	struct	{
		bdrkreg_t	sh1_source		  :	11;
		bdrkreg_t	sh1_rsvd		  :	53;
	} pi_spurious_hdr_1_fld_s;
} pi_spurious_hdr_1_u_t;

#endif




/************************************************************************
 *                                                                      *
 * Description:  This register controls the injection of errors in      *
 * outbound SysAD transfers. When a write sets a bit in this            *
 * register, the PI logic is "armed" to inject that error. At the       *
 * first transfer of the specified type, the error is injected and      *
 * the bit in this register is cleared. Writing to this register does   *
 * not cause a transaction to occur. A bit in this register will        *
 * remain set until a transaction of the specified type occurs as a     *
 * result of normal system activity. This register can be polled to     *
 * determine if an error has been injected or is still "armed".         *
 * This register does not control injection of data quality bad         *
 * indicator on a data cycle. This type of error can be created by      *
 * reading from a memory location that has an uncorrectable ECC         *
 * error.                                                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_err_inject_u {
	bdrkreg_t	pi_err_inject_regval;
	struct  {
		bdrkreg_t	ei_cmd_syscmd_par_a       :	 1;
                bdrkreg_t       ei_data_syscmd_par_a      :      1;
                bdrkreg_t       ei_cmd_sysad_corecc_a     :      1;
                bdrkreg_t       ei_data_sysad_corecc_a    :      1;
                bdrkreg_t       ei_cmd_sysad_uncecc_a     :      1;
                bdrkreg_t       ei_data_sysad_uncecc_a    :      1;
                bdrkreg_t       ei_sysresp_par_a          :      1;
                bdrkreg_t       ei_reserved_1             :     25;
                bdrkreg_t       ei_cmd_syscmd_par_b       :      1;
                bdrkreg_t       ei_data_syscmd_par_b      :      1;
                bdrkreg_t       ei_cmd_sysad_corecc_b     :      1;
                bdrkreg_t       ei_data_sysad_corecc_b    :      1;
                bdrkreg_t       ei_cmd_sysad_uncecc_b     :      1;
                bdrkreg_t       ei_data_sysad_uncecc_b    :      1;
                bdrkreg_t       ei_sysresp_par_b          :      1;
                bdrkreg_t       ei_reserved               :     25;
	} pi_err_inject_fld_s;
} pi_err_inject_u_t;

#else

typedef union pi_err_inject_u {
	bdrkreg_t	pi_err_inject_regval;
	struct	{
		bdrkreg_t	ei_reserved		  :	25;
		bdrkreg_t	ei_sysresp_par_b	  :	 1;
		bdrkreg_t	ei_data_sysad_uncecc_b	  :	 1;
		bdrkreg_t	ei_cmd_sysad_uncecc_b	  :	 1;
		bdrkreg_t	ei_data_sysad_corecc_b	  :	 1;
		bdrkreg_t	ei_cmd_sysad_corecc_b	  :	 1;
		bdrkreg_t	ei_data_syscmd_par_b	  :	 1;
		bdrkreg_t	ei_cmd_syscmd_par_b	  :	 1;
		bdrkreg_t	ei_reserved_1		  :	25;
		bdrkreg_t	ei_sysresp_par_a	  :	 1;
		bdrkreg_t	ei_data_sysad_uncecc_a	  :	 1;
		bdrkreg_t	ei_cmd_sysad_uncecc_a	  :	 1;
		bdrkreg_t	ei_data_sysad_corecc_a	  :	 1;
		bdrkreg_t	ei_cmd_sysad_corecc_a	  :	 1;
		bdrkreg_t	ei_data_syscmd_par_a	  :	 1;
		bdrkreg_t	ei_cmd_syscmd_par_a	  :	 1;
	} pi_err_inject_fld_s;
} pi_err_inject_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This Read/Write location determines at what point the TRex+ is      *
 * stopped from issuing requests, based on the number of entries in     *
 * the incoming reply FIFO. When the number of entries in the Reply     *
 * FIFO is greater than the value of this register, the PI will         *
 * deassert both SysWrRdy and SysRdRdy to both processors. The Reply    *
 * FIFO has a depth of 0x3F entries, so setting this register to 0x3F   *
 * effectively disables this feature, allowing requests to be issued    *
 * always. Setting this register to 0x00 effectively lowers the         *
 * TRex+'s priority below the reply FIFO, disabling TRex+ requests      *
 * any time there is an entry waiting in the incoming FIFO.This         *
 * register is in its own 64KB page so that it can be mapped to user    *
 * space.                                                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_reply_level_u {
	bdrkreg_t	pi_reply_level_regval;
	struct  {
		bdrkreg_t	rl_reply_level            :	 6;
		bdrkreg_t	rl_rsvd			  :	58;
	} pi_reply_level_fld_s;
} pi_reply_level_u_t;

#else

typedef union pi_reply_level_u {
	bdrkreg_t	pi_reply_level_regval;
	struct	{
		bdrkreg_t	rl_rsvd			  :	58;
		bdrkreg_t	rl_reply_level		  :	 6;
	} pi_reply_level_fld_s;
} pi_reply_level_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register is used to change the graphics credit counter         *
 * operation from "Doubleword" mode to "Transaction" mode. This         *
 * register is in its own 64KB page so that it can be mapped to user    *
 * space.                                                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_gfx_credit_mode_u {
	bdrkreg_t	pi_gfx_credit_mode_regval;
	struct  {
		bdrkreg_t	gcm_trans_mode            :	 1;
		bdrkreg_t       gcm_rsvd                  :     63;
	} pi_gfx_credit_mode_fld_s;
} pi_gfx_credit_mode_u_t;

#else

typedef union pi_gfx_credit_mode_u {
	bdrkreg_t	pi_gfx_credit_mode_regval;
	struct	{
		bdrkreg_t	gcm_rsvd		  :	63;
		bdrkreg_t	gcm_trans_mode		  :	 1;
	} pi_gfx_credit_mode_fld_s;
} pi_gfx_credit_mode_u_t;

#endif



/************************************************************************
 *                                                                      *
 *  This location contains a 55-bit read/write counter that wraps to    *
 * zero when the maximum value is reached. This counter is              *
 * incremented at each rising edge of the global clock (GCLK). This     *
 * register is in its own 64KB page so that it can be mapped to user    *
 * space.                                                               *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_rt_counter_u {
	bdrkreg_t	pi_rt_counter_regval;
	struct  {
		bdrkreg_t	rc_count                  :	55;
		bdrkreg_t       rc_rsvd                   :      9;
	} pi_rt_counter_fld_s;
} pi_rt_counter_u_t;

#else

typedef union pi_rt_counter_u {
	bdrkreg_t	pi_rt_counter_regval;
	struct	{
		bdrkreg_t	rc_rsvd			  :	 9;
		bdrkreg_t	rc_count		  :	55;
	} pi_rt_counter_fld_s;
} pi_rt_counter_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register controls the performance counters for one CPU.        *
 * There are two counters for each CPU. Each counter can be             *
 * configured to count a variety of events. The performance counter     *
 * registers for each processor are in their own 64KB page so that      *
 * they can be mapped to user space.                                    *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_perf_cntl_a_u {
	bdrkreg_t	pi_perf_cntl_a_regval;
	struct  {
		bdrkreg_t	pca_cntr_0_select         :	28;
                bdrkreg_t       pca_cntr_0_mode           :      3;
                bdrkreg_t       pca_cntr_0_enable         :      1;
                bdrkreg_t       pca_cntr_1_select         :     28;
                bdrkreg_t       pca_cntr_1_mode           :      3;
                bdrkreg_t       pca_cntr_1_enable         :      1;
	} pi_perf_cntl_a_fld_s;
} pi_perf_cntl_a_u_t;

#else

typedef union pi_perf_cntl_a_u {
	bdrkreg_t	pi_perf_cntl_a_regval;
	struct	{
		bdrkreg_t	pca_cntr_1_enable	  :	 1;
		bdrkreg_t	pca_cntr_1_mode		  :	 3;
		bdrkreg_t	pca_cntr_1_select	  :	28;
		bdrkreg_t	pca_cntr_0_enable	  :	 1;
		bdrkreg_t	pca_cntr_0_mode		  :	 3;
		bdrkreg_t	pca_cntr_0_select	  :	28;
	} pi_perf_cntl_a_fld_s;
} pi_perf_cntl_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register accesses the performance counter 0 for each CPU.      *
 * Each performance counter is 40-bits wide. On overflow, It wraps to   *
 * zero, sets the overflow bit in this register, and sets the           *
 * PERF_CNTR_OFLOW bit in the INT_PEND1 register.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_perf_cntr0_a_u {
	bdrkreg_t	pi_perf_cntr0_a_regval;
	struct  {
		bdrkreg_t	pca_count_value           :	40;
                bdrkreg_t       pca_overflow              :      1;
                bdrkreg_t       pca_rsvd                  :     23;
	} pi_perf_cntr0_a_fld_s;
} pi_perf_cntr0_a_u_t;

#else

typedef union pi_perf_cntr0_a_u {
	bdrkreg_t	pi_perf_cntr0_a_regval;
	struct	{
		bdrkreg_t	pca_rsvd		  :	23;
		bdrkreg_t	pca_overflow		  :	 1;
		bdrkreg_t	pca_count_value		  :	40;
	} pi_perf_cntr0_a_fld_s;
} pi_perf_cntr0_a_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register accesses the performance counter 1for each CPU.       *
 * Each performance counter is 40-bits wide. On overflow, It wraps to   *
 * zero, sets the overflow bit in this register, and sets the           *
 * PERF_CNTR_OFLOW bit in the INT_PEND1 register.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_perf_cntr1_a_u {
	bdrkreg_t	pi_perf_cntr1_a_regval;
	struct  {
		bdrkreg_t	pca_count_value           :	40;
                bdrkreg_t       pca_overflow              :      1;
                bdrkreg_t       pca_rsvd                  :     23;
	} pi_perf_cntr1_a_fld_s;
} pi_perf_cntr1_a_u_t;

#else

typedef union pi_perf_cntr1_a_u {
	bdrkreg_t	pi_perf_cntr1_a_regval;
	struct	{
		bdrkreg_t	pca_rsvd		  :	23;
		bdrkreg_t	pca_overflow		  :	 1;
		bdrkreg_t	pca_count_value		  :	40;
	} pi_perf_cntr1_a_fld_s;
} pi_perf_cntr1_a_u_t;

#endif





/************************************************************************
 *                                                                      *
 *  This register controls the performance counters for one CPU.        *
 * There are two counters for each CPU. Each counter can be             *
 * configured to count a variety of events. The performance counter     *
 * registers for each processor are in their own 64KB page so that      *
 * they can be mapped to user space.                                    *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_perf_cntl_b_u {
	bdrkreg_t	pi_perf_cntl_b_regval;
	struct  {
		bdrkreg_t	pcb_cntr_0_select         :	28;
                bdrkreg_t       pcb_cntr_0_mode           :      3;
                bdrkreg_t       pcb_cntr_0_enable         :      1;
                bdrkreg_t       pcb_cntr_1_select         :     28;
                bdrkreg_t       pcb_cntr_1_mode           :      3;
                bdrkreg_t       pcb_cntr_1_enable         :      1;
	} pi_perf_cntl_b_fld_s;
} pi_perf_cntl_b_u_t;

#else

typedef union pi_perf_cntl_b_u {
	bdrkreg_t	pi_perf_cntl_b_regval;
	struct	{
		bdrkreg_t	pcb_cntr_1_enable	  :	 1;
		bdrkreg_t	pcb_cntr_1_mode		  :	 3;
		bdrkreg_t	pcb_cntr_1_select	  :	28;
		bdrkreg_t	pcb_cntr_0_enable	  :	 1;
		bdrkreg_t	pcb_cntr_0_mode		  :	 3;
		bdrkreg_t	pcb_cntr_0_select	  :	28;
	} pi_perf_cntl_b_fld_s;
} pi_perf_cntl_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register accesses the performance counter 0 for each CPU.      *
 * Each performance counter is 40-bits wide. On overflow, It wraps to   *
 * zero, sets the overflow bit in this register, and sets the           *
 * PERF_CNTR_OFLOW bit in the INT_PEND1 register.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_perf_cntr0_b_u {
	bdrkreg_t	pi_perf_cntr0_b_regval;
	struct  {
		bdrkreg_t	pcb_count_value           :	40;
                bdrkreg_t       pcb_overflow              :      1;
                bdrkreg_t       pcb_rsvd                  :     23;
	} pi_perf_cntr0_b_fld_s;
} pi_perf_cntr0_b_u_t;

#else

typedef union pi_perf_cntr0_b_u {
	bdrkreg_t	pi_perf_cntr0_b_regval;
	struct	{
		bdrkreg_t	pcb_rsvd		  :	23;
		bdrkreg_t	pcb_overflow		  :	 1;
		bdrkreg_t	pcb_count_value		  :	40;
	} pi_perf_cntr0_b_fld_s;
} pi_perf_cntr0_b_u_t;

#endif




/************************************************************************
 *                                                                      *
 *  This register accesses the performance counter 1for each CPU.       *
 * Each performance counter is 40-bits wide. On overflow, It wraps to   *
 * zero, sets the overflow bit in this register, and sets the           *
 * PERF_CNTR_OFLOW bit in the INT_PEND1 register.                       *
 *                                                                      *
 ************************************************************************/




#ifdef LITTLE_ENDIAN

typedef union pi_perf_cntr1_b_u {
	bdrkreg_t	pi_perf_cntr1_b_regval;
	struct  {
		bdrkreg_t	pcb_count_value           :	40;
                bdrkreg_t       pcb_overflow              :      1;
                bdrkreg_t       pcb_rsvd                  :     23;
	} pi_perf_cntr1_b_fld_s;
} pi_perf_cntr1_b_u_t;

#else

typedef union pi_perf_cntr1_b_u {
	bdrkreg_t	pi_perf_cntr1_b_regval;
	struct	{
		bdrkreg_t	pcb_rsvd		  :	23;
		bdrkreg_t	pcb_overflow		  :	 1;
		bdrkreg_t	pcb_count_value		  :	40;
	} pi_perf_cntr1_b_fld_s;
} pi_perf_cntr1_b_u_t;

#endif






#endif /* _LANGUAGE_C */

/************************************************************************
 *                                                                      *
 *               MAKE ALL ADDITIONS AFTER THIS LINE                     *
 *                                                                      *
 ************************************************************************/


#define PI_GFX_OFFSET		(PI_GFX_PAGE_B - PI_GFX_PAGE_A)
#define PI_GFX_PAGE_ENABLE	0x0000010000000000LL


#endif /* _ASM_SN_SN1_HUBPI_H */