1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
/* $Id: pgalloc.h,v 1.3 2000/02/23 00:41:38 ralf Exp $
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994 - 2000 by Ralf Baechle at alii
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
*/
#ifndef _ASM_PGALLOC_H
#define _ASM_PGALLOC_H
/* TLB flushing:
*
* - flush_tlb_all() flushes all processes TLB entries
* - flush_tlb_mm(mm) flushes the specified mm context TLB entries
* - flush_tlb_page(mm, vmaddr) flushes a single page
* - flush_tlb_range(mm, start, end) flushes a range of pages
*/
extern void flush_tlb_all(void);
extern void flush_tlb_mm(struct mm_struct *mm);
extern void flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end);
extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern inline void flush_tlb_pgtables(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
/* Nothing to do on MIPS. */
}
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any.
*/
#define pgd_quicklist (current_cpu_data.pgd_quick)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist (current_cpu_data.pte_quick)
#define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
extern __inline__ pgd_t *get_pgd_slow(void)
{
pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL), *init;
if (ret) {
init = pgd_offset(&init_mm, 0);
pgd_init((unsigned long)ret);
memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return ret;
}
extern __inline__ pgd_t *get_pgd_fast(void)
{
unsigned long *ret;
if((ret = pgd_quicklist) != NULL) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
} else
ret = (unsigned long *)get_pgd_slow();
return (pgd_t *)ret;
}
extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
pgtable_cache_size++;
}
extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
free_page((unsigned long)pgd);
}
extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern __inline__ pte_t *get_pte_fast(void)
{
unsigned long *ret;
if((ret = (unsigned long *)pte_quicklist) != NULL) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
}
return (pte_t *)ret;
}
extern __inline__ void free_pte_fast(pte_t *pte)
{
*(unsigned long *)pte = (unsigned long) pte_quicklist;
pte_quicklist = (unsigned long *) pte;
pgtable_cache_size++;
}
extern __inline__ void free_pte_slow(pte_t *pte)
{
free_page((unsigned long)pte);
}
/* We don't use pmd cache, so these are dummy routines */
extern __inline__ pmd_t *get_pmd_fast(void)
{
return (pmd_t *)0;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}
extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}
extern void __bad_pte(pmd_t *pmd);
extern void __bad_pte_kernel(pmd_t *pmd);
#define pte_free_kernel(pte) free_pte_fast(pte)
#define pte_free(pte) free_pte_fast(pte)
#define pgd_free(pgd) free_pgd_fast(pgd)
#define pgd_alloc() get_pgd_fast()
extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t *page = get_pte_fast();
if (page) {
pmd_val(*pmd) = (unsigned long)page;
return page + address;
}
return get_pte_kernel_slow(pmd, address);
}
if (pmd_bad(*pmd)) {
__bad_pte_kernel(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t *page = get_pte_fast();
if (page) {
pmd_val(*pmd) = (unsigned long)page;
return page + address;
}
return get_pte_slow(pmd, address);
}
if (pmd_bad(*pmd)) {
__bad_pte(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern inline void pmd_free(pmd_t * pmd)
{
}
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
#define pmd_free_kernel pmd_free
#define pmd_alloc_kernel pmd_alloc
extern int do_check_pgt_cache(int, int);
extern inline void set_pgdir(unsigned long address, pgd_t entry)
{
struct task_struct * p;
pgd_t *pgd;
#ifdef __SMP__
int i;
#endif
read_lock(&tasklist_lock);
for_each_task(p) {
if (!p->mm)
continue;
*pgd_offset(p->mm,address) = entry;
}
read_unlock(&tasklist_lock);
#ifndef __SMP__
for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
#else
/* To pgd_alloc/pgd_free, one holds master kernel lock and so does our
callee, so we can modify pgd caches of other CPUs as well. -jj */
for (i = 0; i < NR_CPUS; i++)
for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
#endif
}
#endif /* _ASM_PGALLOC_H */
|