1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
#ifndef _PPC_PGALLOC_H
#define _PPC_PGALLOC_H
#include <linux/config.h>
#include <linux/threads.h>
#include <asm/processor.h>
/*
* This is handled very differently on the PPC since out page tables
* are all 0's and I want to be able to use these zero'd pages elsewhere
* as well - it gives us quite a speedup.
*
* Note that the SMP/UP versions are the same but we don't need a
* per cpu list of zero pages because we do the zero-ing with the cache
* off and the access routines are lock-free but the pgt cache stuff
* is per-cpu since it isn't done with any lock-free access routines
* (although I think we need arch-specific routines so I can do lock-free).
*
* I need to generalize this so we can use it for other arch's as well.
* -- Cort
*/
#ifdef CONFIG_SMP
#define quicklists cpu_data[smp_processor_id()]
#else
extern struct pgtable_cache_struct {
unsigned long *pgd_cache;
unsigned long *pte_cache;
unsigned long pgtable_cache_sz;
} quicklists;
#endif
#define pgd_quicklist (quicklists.pgd_cache)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist (quicklists.pte_cache)
#define pgtable_cache_size (quicklists.pgtable_cache_sz)
extern unsigned long *zero_cache; /* head linked list of pre-zero'd pages */
extern atomic_t zero_sz; /* # currently pre-zero'd pages */
extern atomic_t zeropage_hits; /* # zero'd pages request that we've done */
extern atomic_t zeropage_calls; /* # zero'd pages request that've been made */
extern atomic_t zerototal; /* # pages zero'd over time */
#define zero_quicklist (zero_cache)
#define zero_cache_sz (zero_sz)
#define zero_cache_calls (zeropage_calls)
#define zero_cache_hits (zeropage_hits)
#define zero_cache_total (zerototal)
/* return a pre-zero'd page from the list, return NULL if none available -- Cort */
extern unsigned long get_zero_page_fast(void);
extern void __bad_pte(pmd_t *pmd);
extern inline void set_pgdir(unsigned long address, pgd_t entry)
{
struct task_struct * p;
pgd_t *pgd;
#ifdef CONFIG_SMP
int i;
#endif
read_lock(&tasklist_lock);
for_each_task(p) {
if (!p->mm)
continue;
*pgd_offset(p->mm,address) = entry;
}
read_unlock(&tasklist_lock);
#ifndef CONFIG_SMP
for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
#else
/* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can
modify pgd caches of other CPUs as well. -jj */
for (i = 0; i < NR_CPUS; i++)
for (pgd = (pgd_t *)cpu_data[i].pgd_cache; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
#endif
}
/* We don't use pmd cache, so this is a dummy routine */
extern __inline__ pmd_t *get_pmd_fast(void)
{
return (pmd_t *)0;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}
extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern inline void pmd_free(pmd_t * pmd)
{
}
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
#define pmd_free_kernel pmd_free
#define pmd_alloc_kernel pmd_alloc
#define pte_alloc_kernel pte_alloc
extern __inline__ pgd_t *get_pgd_slow(void)
{
pgd_t *ret, *init;
/*if ( (ret = (pgd_t *)get_zero_page_fast()) == NULL )*/
if ( (ret = (pgd_t *)__get_free_page(GFP_KERNEL)) != NULL )
memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
if (ret) {
init = pgd_offset(&init_mm, 0);
memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return ret;
}
extern __inline__ pgd_t *get_pgd_fast(void)
{
unsigned long *ret;
if ((ret = pgd_quicklist) != NULL) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = 0;
pgtable_cache_size--;
} else
ret = (unsigned long *)get_pgd_slow();
return (pgd_t *)ret;
}
extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
*(unsigned long **)pgd = pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
pgtable_cache_size++;
}
extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
free_page((unsigned long)pgd);
}
extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern __inline__ pte_t *get_pte_fast(void)
{
unsigned long *ret;
if ((ret = pte_quicklist) != NULL) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = 0;
pgtable_cache_size--;
}
return (pte_t *)ret;
}
extern __inline__ void free_pte_fast(pte_t *pte)
{
*(unsigned long **)pte = pte_quicklist;
pte_quicklist = (unsigned long *) pte;
pgtable_cache_size++;
}
extern __inline__ void free_pte_slow(pte_t *pte)
{
free_page((unsigned long)pte);
}
#define pte_free_kernel(pte) free_pte_fast(pte)
#define pte_free(pte) free_pte_fast(pte)
#define pgd_free(pgd) free_pgd_fast(pgd)
#define pgd_alloc() get_pgd_fast()
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t * page = (pte_t *) get_pte_fast();
if (!page)
return get_pte_slow(pmd, address);
pmd_val(*pmd) = (unsigned long) page;
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pte(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
extern int do_check_pgt_cache(int, int);
#endif /* _PPC_PGALLOC_H */
|