1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/*
* include/asm-s390/pgtable.h
*
* S390 version
* Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Hartmut Penner
*
* Derived from "include/asm-i386/pgtable.h"
*/
#ifndef _ASM_S390_PGTABLE_H
#define _ASM_S390_PGTABLE_H
/*
* The Linux memory management assumes a three-level page table setup. On
* the S390, we use that, but "fold" the mid level into the top-level page
* table, so that we physically have the same two-level page table as the
* S390 mmu expects.
*
* This file contains the functions and defines necessary to modify and use
* the S390 page table tree.
*/
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <linux/tasks.h>
extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
/* Caches aren't brain-dead on S390. */
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, start, end) do { } while (0)
#define flush_cache_page(vma, vmaddr) do { } while (0)
#define flush_page_to_ram(page) do { } while (0)
#define flush_icache_range(start, end) do { } while (0)
#define flush_icache_page(vma,pg) do { } while (0)
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[1024];
#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
#endif /* !__ASSEMBLY__ */
/* Certain architectures need to do special things when PTEs
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT 22
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 22
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the S390 is two-level, so
* we don't really have any PMD directory physically.
* for S390 segment-table entries are combined to one PGD
* that leads to 1024 pte per pgd
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 512
/*
* pgd entries used up by user/kernel:
*/
#define USER_PTRS_PER_PGD 512
#define USER_PGD_PTRS 512
#define KERNEL_PGD_PTRS 512
#define FIRST_USER_PGD_NR 0
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
#ifndef __ASSEMBLY__
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END (0x7fffffffL)
/*
* A pagetable entry of S390 has following format:
*
* | PFRA | | OS |
* 0 0IP0
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* I Page-Invalid Bit: Page is not available for address-translation
* P Page-Protection Bit: Store access not possible for page
*/
/*
* A segmenttable entry of S390 has following format:
*
* | P-table origin | |PTL
* 0 IC
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* C Common-Segment Bit: Segment is not private (PoP 3-30)
* PTL Page-Table-Length: Length of Page-table (PTL+1*16 entries -> up to 256 entries)
*/
/*
* The segmenttable origin of S390 has following format:
*
* |S-table origin | | STL |
* X **GPS
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* X Space-Switch event:
* G Segment-Invalid Bit: *
* P Private-Space Bit: Segment is not private (PoP 3-30)
* S Storage-Alteration:
* STL Segment-Table-Length: Length of Page-table (STL+1*16 entries -> up to 2048 entries)
*/
#define _PAGE_PRESENT 0x001 /* Software */
#define _PAGE_ACCESSED 0x002 /* Software accessed */
#define _PAGE_DIRTY 0x004 /* Software dirty */
#define _PAGE_RO 0x200 /* HW read-only */
#define _PAGE_INVALID 0x400 /* HW invalid */
#define _PAGE_TABLE_LEN 0xf /* only full page-tables */
#define _PAGE_TABLE_COM 0x10 /* common page-table */
#define _PAGE_TABLE_INV 0x20 /* invalid page-table */
#define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */
#define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */
#define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */
/*
* User and Kernel pagetables are identical
*/
#define _PAGE_TABLE (_PAGE_TABLE_LEN )
#define _KERNPG_TABLE (_PAGE_TABLE_LEN )
/*
* The Kernel segment-tables includes the User segment-table
*/
#define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000)
#define _KERNSEG_TABLE (_KERNEL_SEG_TABLE_LEN)
/*
* No mapping available
*/
#define PAGE_NONE __pgprot(_PAGE_INVALID )
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_RO)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_RO)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY)
/*
* The S390 can't do page protection for execute, and considers that the same are read.
* Also, write permissions imply read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
/*
* Define this if things work differently on an i386 and an i486:
* it will (on an i486) warn about kernel memory accesses that are
* done without a 'verify_area(VERIFY_WRITE,..)'
*
* Kernel and User memory-access are done equal, so we don't need verify
*/
#undef TEST_VERIFY_AREA
/* page table for 0-4MB for everybody */
extern unsigned long pg0[1024];
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR (8*sizeof(unsigned long))
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware! SRB. */
#define SIZEOF_PTR_LOG2 2
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
/*
* CR 7 (SPST) and cr 13 (HPST) are set to the user pgdir.
* Kernel is running in its own, disjunct address space,
* running in primary address space.
* Copy to/from user is done via access register mode with
* access registers set to 0 or 1. For that purpose we need
* set up CR 7 with the user pgd.
*
*/
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
unsigned long __pgdir = (__pa(pgdir) & PAGE_MASK ) | _SEGMENT_TABLE; \
(tsk)->thread.user_seg = __pgdir; \
if ((tsk) == current) { \
__asm__ __volatile__("lctl 7,7,%0": :"m" (__pgdir)); \
__asm__ __volatile__("lctl 13,13,%0": :"m" (__pgdir)); \
} \
} while (0)
/*
* CR 7 (SPST) and cr 13 (HPST) are set to the user pgdir.
* Kernel is running in its own, disjunct address space,
* running in primary address space.
* Copy to/from user is done via access register mode with
* access registers set to 0 or 1. For that purpose we need
* set up CR 7 with the user pgd.
*
*/
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
unsigned long __pgdir = (__pa(pgdir) & PAGE_MASK ) | _SEGMENT_TABLE; \
(tsk)->thread.user_seg = __pgdir; \
if ((tsk) == current) { \
__asm__ __volatile__("lctl 7,7,%0": :"m" (__pgdir)); \
__asm__ __volatile__("lctl 13,13,%0": :"m" (__pgdir)); \
} \
} while (0)
extern inline int pte_none(pte_t pte) { return ((pte_val(pte) & (_PAGE_INVALID | _PAGE_RO)) == _PAGE_INVALID); }
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = _PAGE_INVALID; }
extern inline int pte_pagenr(pte_t pte) { return ((unsigned long)((pte_val(pte) >> PAGE_SHIFT))); }
extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; }
extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) == 0); }
extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; }
extern inline void pmd_clear(pmd_t * pmdp) {
pmd_val(pmdp[0]) = _PAGE_TABLE_INV;
pmd_val(pmdp[1]) = _PAGE_TABLE_INV;
pmd_val(pmdp[2]) = _PAGE_TABLE_INV;
pmd_val(pmdp[3]) = _PAGE_TABLE_INV;
}
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
extern inline int pgd_none(pgd_t pgd) { return 0; }
extern inline int pgd_bad(pgd_t pgd) { return 0; }
extern inline int pgd_present(pgd_t pgd) { return 1; }
extern inline void pgd_clear(pgd_t * pgdp) { }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RO); }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
/* who needs that
extern inline int pte_read(pte_t pte) { return !(pte_val(pte) & _PAGE_INVALID); }
extern inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_INVALID); }
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) |= _PAGE_INVALID; return pte; }
extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) |= _PAGE_INVALID; return pte; }
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) &= _PAGE_INVALID; return pte; }
extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= _PAGE_INVALID; return pte; }
*/
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RO; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RO ; return pte; }
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) \
({ pte_t __pte; pte_val(__pte) = __pa(((page)-mem_map)<<PAGE_SHIFT) + pgprot_val(pgprot); __pte; })
/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & PAGE_MASK) | pgprot_val(newprot); return pte; }
#define page_address(page) \
({ if (!(page)->virtual) BUG(); (page)->virtual; })
#define pte_page(x) (mem_map+pte_pagenr(x))
#define pmd_page(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
/* to find an entry in a page-table-directory */
#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define __pgd_offset(address) pgd_index(address)
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
/* Find an entry in the third-level page table.. */
#define pte_offset(pmd, address) \
((pte_t *) (pmd_page(*pmd) + ((address>>10) & ((PTRS_PER_PTE-1)<<2))))
/* We don't use pmd cache, so these are dummy routines */
extern __inline__ pmd_t *get_pmd_fast(void)
{
return (pmd_t *)0;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}
extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}
extern void __handle_bad_pmd(pmd_t *pmd);
extern void __handle_bad_pmd_kernel(pmd_t *pmd);
/*
* The S390 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
extern inline void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
}
/*
* a page-table entry has only 19 bit for offset and 7 bit for type
* if bits 0, 20 or 23 are set, a translation specification exceptions occures, and it's
* hard to find out the failing address
* therefor, we zero out this bits
*/
#define SWP_TYPE(entry) (((entry).val >> 1) & 0x3f)
#define SWP_OFFSET(entry) (((entry).val >> 12) & 0x7FFFF )
#define SWP_ENTRY(type,offset) ((swp_entry_t) { (((type) << 1) | \
((offset) << 12) | \
_PAGE_INVALID | _PAGE_RO) \
& 0x7ffff6fe })
#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define swp_entry_to_pte(x) ((pte_t) { (x).val })
#define module_map vmalloc
#define module_unmap vfree
#endif /* !__ASSEMBLY__ */
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#endif /* _S390_PAGE_H */
|