summaryrefslogtreecommitdiffstats
path: root/include/asm-sparc64/bitops.h
blob: 39a16948d8b0d8deb34b435b68f790ba0a6a06ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* $Id: bitops.h,v 1.11 1997/04/10 23:32:42 davem Exp $
 * bitops.h: Bit string operations on the V9.
 *
 * Copyright 1996 David S. Miller (davem@caip.rutgers.edu)
 */

#ifndef _SPARC64_BITOPS_H
#define _SPARC64_BITOPS_H

#include <asm/asi.h>         /* For the little endian spaces. */

/* These can all be exported to userland, because the atomic
 * primitives used are not privileged.
 */

/* Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0'
 * is in the highest of the four bytes and bit '31' is the high bit
 * within the first byte. Sparc is BIG-Endian. Unless noted otherwise
 * all bit-ops return 0 if bit was previously clear and != 0 otherwise.
 */

extern __inline__ unsigned long set_bit(unsigned long nr, void *addr)
{
	unsigned long oldbit;
	unsigned long temp0, temp1;
	unsigned int * m = ((unsigned int *) addr) + (nr >> 5);

	__asm__ __volatile__("
	lduw		[%4], %0
1:
	andcc		%0, %3, %2
	bne,pn		%%icc, 2f
	 xor		%0, %3, %1
	cas 		[%4], %0, %1
	cmp		%0, %1
	bne,a,pn	%%icc, 1b
	 lduw		[%4], %0
2:
"	: "=&r" (temp0), "=&r" (temp1), "=&r" (oldbit)
	: "HIr" (1UL << (nr & 31)), "r" (m)
	: "cc");
	return oldbit != 0;
}

extern __inline__ unsigned long clear_bit(unsigned long nr, void *addr)
{
	unsigned long oldbit;
	unsigned long temp0, temp1;
	unsigned int * m = ((unsigned int *) addr) + (nr >> 5);

	__asm__ __volatile__("
	lduw		[%4], %0
1:
	andcc		%0, %3, %2
	be,pn		%%icc, 2f
	 xor		%0, %3, %1
	cas 		[%4], %0, %1
	cmp		%0, %1
	bne,a,pn	%%icc, 1b
	 lduw		[%4], %0
2:
"	: "=&r" (temp0), "=&r" (temp1), "=&r" (oldbit)
	: "HIr" (1UL << (nr & 31)), "r" (m)
	: "cc");
	return oldbit != 0;
}

extern __inline__ unsigned long change_bit(unsigned long nr, void *addr)
{
	unsigned long oldbit;
	unsigned long temp0, temp1;
	unsigned int * m = ((unsigned int *) addr) + (nr >> 5);

	__asm__ __volatile__("
	lduw		[%4], %0
1:
	and		%0, %3, %2
	xor		%0, %3, %1
	cas 		[%4], %0, %1
	cmp		%0, %1
	bne,a,pn	%%icc, 1b
	 lduw		[%4], %0
"	: "=&r" (temp0), "=&r" (temp1), "=&r" (oldbit)
	: "HIr" (1UL << (nr & 31)), "r" (m)
	: "cc");
	return oldbit != 0;
}

extern __inline__ unsigned long test_bit(int nr, __const__ void *addr)
{
	return 1UL & (((__const__ int *) addr)[nr >> 5] >> (nr & 31));
}

/* The easy/cheese version for now. */
extern __inline__ unsigned long ffz(unsigned long word)
{
	unsigned long result = 0;

	while(word & 1) {
		result++;
		word >>= 1;
	}
	return result;
}

/* find_next_zero_bit() finds the first zero bit in a bit string of length
 * 'size' bits, starting the search at bit 'offset'. This is largely based
 * on Linus's ALPHA routines, which are pretty portable BTW.
 */

extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size & ~31UL) {
		if (~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

/* Now for the ext2 filesystem bit operations and helper routines.
 * Note the usage of the little endian ASI's, werd, V9 is supreme.
 */
extern __inline__ int set_le_bit(int nr,void * addr)
{
	unsigned long oldbit;
	unsigned long temp0, temp1;
	unsigned int * m = ((unsigned int *) addr) + (nr >> 5);

	__asm__ __volatile__("
	lduwa		[%4] %5, %0
1:
	andcc		%0, %3, %2
	bne,pn		%%icc, 2f
	 xor		%0, %3, %1
	casa 		[%4] %5, %0, %1
	cmp		%0, %1
	bne,a,pn	%%icc, 1b
	 lduwa		[%4] %5, %0
2:
"	: "=&r" (temp0), "=&r" (temp1), "=&r" (oldbit)
	: "HIr" (1UL << (nr & 31)), "r" (m), "i" (ASI_PL)
	: "cc");
	return oldbit != 0;
}

extern __inline__ int clear_le_bit(int nr, void * addr)
{
	unsigned long oldbit;
	unsigned long temp0, temp1;
	unsigned int * m = ((unsigned int *) addr) + (nr >> 5);

	__asm__ __volatile__("
	lduwa		[%4] %5, %0
1:
	andcc		%0, %3, %2
	be,pn		%%icc, 2f
	 xor		%0, %3, %1
	casa 		[%4] %5, %0, %1
	cmp		%0, %1
	bne,a,pn	%%icc, 1b
	 lduwa		[%4] %5, %0
2:
"	: "=&r" (temp0), "=&r" (temp1), "=&r" (oldbit)
	: "HIr" (1UL << (nr & 31)), "r" (m), "i" (ASI_PL)
	: "cc");
	return oldbit != 0;
}

extern __inline__ int test_le_bit(int nr, __const__ void * addr)
{
	int			mask;
	__const__ unsigned char	*ADDR = (__const__ unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	return ((mask & *ADDR) != 0);
}

#define find_first_zero_le_bit(addr, size) \
        find_next_zero_le_bit((addr), (size), 0)

extern __inline__ unsigned long __swab64(unsigned long value)
{
	return (((value>>56) & 0x00000000000000ff) |
		((value>>40) & 0x000000000000ff00) |
		((value>>24) & 0x0000000000ff0000) |
		((value>>8)  & 0x00000000ff000000) |
		((value<<8)  & 0x000000ff00000000) |
		((value<<24) & 0x0000ff0000000000) |
		((value<<40) & 0x00ff000000000000) |
		((value<<56) & 0xff00000000000000));
}     

extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~63UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 63UL;
	if(offset) {
		tmp = *(p++);
		tmp |= __swab64((~0UL >> (64-offset)));
		if(size < 64)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 64;
		result += 64;
	}
	while(size & ~63UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 64;
		size -= 64;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	return result + ffz(__swab64(tmp) | (~0UL << size));
found_middle:
	return result + ffz(__swab64(tmp));
}

#ifdef __KERNEL__

#define ext2_set_bit			set_le_bit
#define ext2_clear_bit			clear_le_bit
#define ext2_test_bit  			test_le_bit
#define ext2_find_first_zero_bit	find_first_zero_le_bit
#define ext2_find_next_zero_bit		find_next_zero_le_bit

/* Bitmap functions for the minix filesystem.  */
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_clear_bit(nr,addr) clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)

#endif /* __KERNEL__ */

#endif /* defined(_SPARC64_BITOPS_H) */