1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/* $Id: spitfire.h,v 1.9 1998/04/28 08:23:33 davem Exp $
* spitfire.h: SpitFire/BlackBird/Cheetah inline MMU operations.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _SPARC64_SPITFIRE_H
#define _SPARC64_SPITFIRE_H
#include <asm/asi.h>
/* The following register addresses are accessible via ASI_DMMU
* and ASI_IMMU, that is there is a distinct and unique copy of
* each these registers for each TLB.
*/
#define TSB_TAG_TARGET 0x0000000000000000
#define TLB_SFSR 0x0000000000000018
#define TSB_REG 0x0000000000000028
#define TLB_TAG_ACCESS 0x0000000000000030
/* These registers only exist as one entity, and are accessed
* via ASI_DMMU only.
*/
#define PRIMARY_CONTEXT 0x0000000000000008
#define SECONDARY_CONTEXT 0x0000000000000010
#define DMMU_SFAR 0x0000000000000020
#define VIRT_WATCHPOINT 0x0000000000000038
#define PHYS_WATCHPOINT 0x0000000000000040
#ifndef __ASSEMBLY__
extern __inline__ unsigned long spitfire_get_isfsr(void)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ret)
: "r" (TLB_SFSR), "i" (ASI_IMMU));
return ret;
}
extern __inline__ unsigned long spitfire_get_dsfsr(void)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ret)
: "r" (TLB_SFSR), "i" (ASI_DMMU));
return ret;
}
extern __inline__ unsigned long spitfire_get_sfar(void)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ret)
: "r" (DMMU_SFAR), "i" (ASI_DMMU));
return ret;
}
extern __inline__ void spitfire_put_isfsr(unsigned long sfsr)
{
__asm__ __volatile__("stxa %0, [%1] %2" :
: "r" (sfsr), "r" (TLB_SFSR), "i" (ASI_IMMU));
}
extern __inline__ void spitfire_put_dsfsr(unsigned long sfsr)
{
__asm__ __volatile__("stxa %0, [%1] %2" :
: "r" (sfsr), "r" (TLB_SFSR), "i" (ASI_DMMU));
}
extern __inline__ unsigned long spitfire_get_primary_context(void)
{
unsigned long ctx;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ctx)
: "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
return ctx;
}
extern __inline__ void spitfire_set_primary_context(unsigned long ctx)
{
__asm__ __volatile__("stxa %0, [%1] %2"
: /* No outputs */
: "r" (ctx & 0x3ff),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
membar("#Sync");
}
extern __inline__ unsigned long spitfire_get_secondary_context(void)
{
unsigned long ctx;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ctx)
: "r" (SECONDARY_CONTEXT), "i" (ASI_DMMU));
return ctx;
}
extern __inline__ void spitfire_set_secondary_context(unsigned long ctx)
{
__asm__ __volatile__("stxa %0, [%1] %2"
: /* No outputs */
: "r" (ctx & 0x3ff),
"r" (SECONDARY_CONTEXT), "i" (ASI_DMMU));
membar("#Sync");
}
/* The data cache is write through, so this just invalidates the
* specified line.
*/
extern __inline__ void spitfire_put_dcache_tag(unsigned long addr, unsigned long tag)
{
__asm__ __volatile__("stxa %0, [%1] %2"
: /* No outputs */
: "r" (tag), "r" (addr), "i" (ASI_DCACHE_TAG));
}
/* The instruction cache lines are flushed with this, but note that
* this does not flush the pipeline. It is possible for a line to
* get flushed but stale instructions to still be in the pipeline,
* a flush instruction (to any address) is sufficient to handle
* this issue after the line is invalidated.
*/
extern __inline__ void spitfire_put_icache_tag(unsigned long addr, unsigned long tag)
{
__asm__ __volatile__("stxa %0, [%1] %2"
: /* No outputs */
: "r" (tag), "r" (addr), "i" (ASI_IC_TAG));
}
extern __inline__ unsigned long spitfire_get_dtlb_data(int entry)
{
unsigned long data;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (data)
: "r" (entry << 3), "i" (ASI_DTLB_DATA_ACCESS));
return data;
}
extern __inline__ unsigned long spitfire_get_dtlb_tag(int entry)
{
unsigned long tag;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (tag)
: "r" (entry << 3), "i" (ASI_DTLB_TAG_READ));
return tag;
}
extern __inline__ void spitfire_put_dtlb_data(int entry, unsigned long data)
{
__asm__ __volatile__("stxa %0, [%1] %2"
: /* No outputs */
: "r" (data), "r" (entry << 3),
"i" (ASI_DTLB_DATA_ACCESS));
}
extern __inline__ unsigned long spitfire_get_itlb_data(int entry)
{
unsigned long data;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (data)
: "r" (entry << 3), "i" (ASI_ITLB_DATA_ACCESS));
return data;
}
extern __inline__ unsigned long spitfire_get_itlb_tag(int entry)
{
unsigned long tag;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (tag)
: "r" (entry << 3), "i" (ASI_ITLB_TAG_READ));
return tag;
}
extern __inline__ void spitfire_put_itlb_data(int entry, unsigned long data)
{
__asm__ __volatile__("stxa %0, [%1] %2"
: /* No outputs */
: "r" (data), "r" (entry << 3),
"i" (ASI_ITLB_DATA_ACCESS));
}
/* Spitfire hardware assisted TLB flushes. */
/* Context level flushes. */
extern __inline__ void spitfire_flush_dtlb_primary_context(void)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (0x40), "i" (ASI_DMMU_DEMAP));
}
extern __inline__ void spitfire_flush_itlb_primary_context(void)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (0x40), "i" (ASI_IMMU_DEMAP));
}
extern __inline__ void spitfire_flush_dtlb_secondary_context(void)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (0x50), "i" (ASI_DMMU_DEMAP));
}
extern __inline__ void spitfire_flush_itlb_secondary_context(void)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (0x50), "i" (ASI_IMMU_DEMAP));
}
extern __inline__ void spitfire_flush_dtlb_nucleus_context(void)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (0x60), "i" (ASI_DMMU_DEMAP));
}
extern __inline__ void spitfire_flush_itlb_nucleus_context(void)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (0x60), "i" (ASI_IMMU_DEMAP));
}
/* Page level flushes. */
extern __inline__ void spitfire_flush_dtlb_primary_page(unsigned long page)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (page), "i" (ASI_DMMU_DEMAP));
}
extern __inline__ void spitfire_flush_itlb_primary_page(unsigned long page)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (page), "i" (ASI_IMMU_DEMAP));
}
extern __inline__ void spitfire_flush_dtlb_secondary_page(unsigned long page)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (page | 0x10), "i" (ASI_DMMU_DEMAP));
}
extern __inline__ void spitfire_flush_itlb_secondary_page(unsigned long page)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (page | 0x10), "i" (ASI_IMMU_DEMAP));
}
extern __inline__ void spitfire_flush_dtlb_nucleus_page(unsigned long page)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (page | 0x20), "i" (ASI_DMMU_DEMAP));
}
extern __inline__ void spitfire_flush_itlb_nucleus_page(unsigned long page)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* No outputs */
: "r" (page | 0x20), "i" (ASI_IMMU_DEMAP));
}
#endif /* !(__ASSEMBLY__) */
#endif /* !(_SPARC64_SPITFIRE_H) */
|