1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
|
/*
* linux/kernel/sched.c
*
* Kernel scheduler and related syscalls
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
* 1998-12-28 Implemented better SMP scheduling by Ingo Molnar
*/
/*
* 'sched.c' is the main kernel file. It contains scheduling primitives
* (sleep_on, wakeup, schedule etc) as well as a number of simple system
* call functions (type getpid()), which just extract a field from
* current-task
*/
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
extern void timer_bh(void);
extern void tqueue_bh(void);
extern void immediate_bh(void);
/*
* scheduler variables
*/
unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
extern void mem_use(void);
/*
* Scheduling quanta.
*
* NOTE! The unix "nice" value influences how long a process
* gets. The nice value ranges from -20 to +19, where a -20
* is a "high-priority" task, and a "+10" is a low-priority
* task.
*
* We want the time-slice to be around 50ms or so, so this
* calculation depends on the value of HZ.
*/
#if HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)
#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(x) ((x) << 2)
#endif
#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)
/*
* Init task must be ok at boot for the ix86 as we will check its signals
* via the SMP irq return path.
*/
struct task_struct * init_tasks[NR_CPUS] = {&init_task, };
/*
* The tasklist_lock protects the linked list of processes.
*
* The scheduler lock is protecting against multiple entry
* into the scheduling code, and doesn't need to worry
* about interrupts (because interrupts cannot call the
* scheduler).
*
* The run-queue lock locks the parts that actually access
* and change the run-queues, and have to be interrupt-safe.
*/
spinlock_t runqueue_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED; /* second */
rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED; /* third */
static LIST_HEAD(runqueue_head);
/*
* We align per-CPU scheduling data on cacheline boundaries,
* to prevent cacheline ping-pong.
*/
static union {
struct schedule_data {
struct task_struct * curr;
cycles_t last_schedule;
} schedule_data;
char __pad [SMP_CACHE_BYTES];
} aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};
#define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr
#define last_schedule(cpu) aligned_data[(cpu)].schedule_data.last_schedule
struct kernel_stat kstat;
#ifdef CONFIG_SMP
#define idle_task(cpu) (init_tasks[cpu_number_map(cpu)])
#define can_schedule(p,cpu) ((!(p)->has_cpu) && \
((p)->cpus_allowed & (1 << cpu)))
#else
#define idle_task(cpu) (&init_task)
#define can_schedule(p,cpu) (1)
#endif
void scheduling_functions_start_here(void) { }
/*
* This is the function that decides how desirable a process is..
* You can weigh different processes against each other depending
* on what CPU they've run on lately etc to try to handle cache
* and TLB miss penalties.
*
* Return values:
* -1000: never select this
* 0: out of time, recalculate counters (but it might still be
* selected)
* +ve: "goodness" value (the larger, the better)
* +1000: realtime process, select this.
*/
static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
{
int weight;
/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes
* into account).
*/
if (p->policy != SCHED_OTHER) {
weight = 1000 + p->rt_priority;
goto out;
}
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don't do any other calculations if the time slice is
* over..
*/
weight = p->counter;
if (!weight)
goto out;
#ifdef CONFIG_SMP
/* Give a largish advantage to the same processor... */
/* (this is equivalent to penalizing other processors) */
if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;
#endif
/* .. and a slight advantage to the current MM */
if (p->mm == this_mm || !p->mm)
weight += 1;
weight += 20 - p->nice;
out:
return weight;
}
/*
* subtle. We want to discard a yielded process only if it's being
* considered for a reschedule. Wakeup-time 'queries' of the scheduling
* state do not count. Another optimization we do: sched_yield()-ed
* processes are runnable (and thus will be considered for scheduling)
* right when they are calling schedule(). So the only place we need
* to care about SCHED_YIELD is when we calculate the previous process'
* goodness ...
*/
static inline int prev_goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
{
if (p->policy & SCHED_YIELD) {
p->policy &= ~SCHED_YIELD;
return 0;
}
return goodness(p, this_cpu, this_mm);
}
/*
* the 'goodness value' of replacing a process on a given CPU.
* positive value means 'replace', zero or negative means 'dont'.
*/
static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)
{
return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm);
}
/*
* This is ugly, but reschedule_idle() is very timing-critical.
* We enter with the runqueue spinlock held, but we might end
* up unlocking it early, so the caller must not unlock the
* runqueue, it's always done by reschedule_idle().
*
* This function must be inline as anything that saves and restores
* flags has to do so within the same register window on sparc (Anton)
*/
static inline void reschedule_idle(struct task_struct * p, unsigned long flags)
{
#ifdef CONFIG_SMP
int this_cpu = smp_processor_id();
struct task_struct *tsk, *target_tsk;
int cpu, best_cpu, i, max_prio;
cycles_t oldest_idle;
/*
* shortcut if the woken up task's last CPU is
* idle now.
*/
best_cpu = p->processor;
if (can_schedule(p, best_cpu)) {
tsk = idle_task(best_cpu);
if (cpu_curr(best_cpu) == tsk)
goto send_now_idle;
/*
* Maybe this process has enough priority to preempt
* its preferred CPU. (this is a shortcut):
*/
tsk = cpu_curr(best_cpu);
if (preemption_goodness(tsk, p, best_cpu) > 0)
goto preempt_now;
}
/*
* We know that the preferred CPU has a cache-affine current
* process, lets try to find a new idle CPU for the woken-up
* process. Select the least recently active idle CPU. (that
* one will have the least active cache context.) Also find
* the executing process which has the least priority.
*/
oldest_idle = -1ULL;
target_tsk = NULL;
max_prio = 1;
for (i = 0; i < smp_num_cpus; i++) {
cpu = cpu_logical_map(i);
if (!can_schedule(p, cpu))
continue;
tsk = cpu_curr(cpu);
/*
* We use the first available idle CPU. This creates
* a priority list between idle CPUs, but this is not
* a problem.
*/
if (tsk == idle_task(cpu)) {
if (last_schedule(cpu) < oldest_idle) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;
}
} else {
if (oldest_idle == -1ULL) {
int prio = preemption_goodness(tsk, p, cpu);
if (prio > max_prio) {
max_prio = prio;
target_tsk = tsk;
}
}
}
}
tsk = target_tsk;
if (tsk) {
if (oldest_idle != -1ULL)
goto send_now_idle;
goto preempt_now;
}
spin_unlock_irqrestore(&runqueue_lock, flags);
return;
send_now_idle:
/*
* If need_resched == -1 then we can skip sending the IPI
* altogether, tsk->need_resched is actively watched by the
* idle thread.
*/
if ((tsk->processor != current->processor) && !tsk->need_resched)
smp_send_reschedule(tsk->processor);
tsk->need_resched = 1;
spin_unlock_irqrestore(&runqueue_lock, flags);
return;
preempt_now:
tsk->need_resched = 1;
spin_unlock_irqrestore(&runqueue_lock, flags);
/*
* the APIC stuff can go outside of the lock because
* it uses no task information, only CPU#.
*/
if (tsk->processor != this_cpu)
smp_send_reschedule(tsk->processor);
return;
#else /* UP */
int this_cpu = smp_processor_id();
struct task_struct *tsk;
tsk = cpu_curr(this_cpu);
if (preemption_goodness(tsk, p, this_cpu) > 1)
tsk->need_resched = 1;
spin_unlock_irqrestore(&runqueue_lock, flags);
#endif
}
/*
* Careful!
*
* This has to add the process to the _beginning_ of the
* run-queue, not the end. See the comment about "This is
* subtle" in the scheduler proper..
*/
static inline void add_to_runqueue(struct task_struct * p)
{
list_add(&p->run_list, &runqueue_head);
nr_running++;
}
static inline void move_last_runqueue(struct task_struct * p)
{
list_del(&p->run_list);
list_add_tail(&p->run_list, &runqueue_head);
}
static inline void move_first_runqueue(struct task_struct * p)
{
list_del(&p->run_list);
list_add(&p->run_list, &runqueue_head);
}
/*
* Wake up a process. Put it on the run-queue if it's not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you're allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/
inline void wake_up_process(struct task_struct * p)
{
unsigned long flags;
/*
* We want the common case fall through straight, thus the goto.
*/
spin_lock_irqsave(&runqueue_lock, flags);
p->state = TASK_RUNNING;
if (task_on_runqueue(p))
goto out;
add_to_runqueue(p);
reschedule_idle(p, flags); // spin_unlocks runqueue
return;
out:
spin_unlock_irqrestore(&runqueue_lock, flags);
}
static inline void wake_up_process_synchronous(struct task_struct * p)
{
unsigned long flags;
/*
* We want the common case fall through straight, thus the goto.
*/
spin_lock_irqsave(&runqueue_lock, flags);
p->state = TASK_RUNNING;
if (task_on_runqueue(p))
goto out;
add_to_runqueue(p);
out:
spin_unlock_irqrestore(&runqueue_lock, flags);
}
static void process_timeout(unsigned long __data)
{
struct task_struct * p = (struct task_struct *) __data;
wake_up_process(p);
}
signed long schedule_timeout(signed long timeout)
{
struct timer_list timer;
unsigned long expire;
switch (timeout)
{
case MAX_SCHEDULE_TIMEOUT:
/*
* These two special cases are useful to be comfortable
* in the caller. Nothing more. We could take
* MAX_SCHEDULE_TIMEOUT from one of the negative value
* but I' d like to return a valid offset (>=0) to allow
* the caller to do everything it want with the retval.
*/
schedule();
goto out;
default:
/*
* Another bit of PARANOID. Note that the retval will be
* 0 since no piece of kernel is supposed to do a check
* for a negative retval of schedule_timeout() (since it
* should never happens anyway). You just have the printk()
* that will tell you if something is gone wrong and where.
*/
if (timeout < 0)
{
printk(KERN_ERR "schedule_timeout: wrong timeout "
"value %lx from %p\n", timeout,
__builtin_return_address(0));
current->state = TASK_RUNNING;
goto out;
}
}
expire = timeout + jiffies;
init_timer(&timer);
timer.expires = expire;
timer.data = (unsigned long) current;
timer.function = process_timeout;
add_timer(&timer);
schedule();
del_timer_sync(&timer);
timeout = expire - jiffies;
out:
return timeout < 0 ? 0 : timeout;
}
/*
* schedule_tail() is getting called from the fork return path. This
* cleans up all remaining scheduler things, without impacting the
* common case.
*/
static inline void __schedule_tail(struct task_struct *prev)
{
current->need_resched |= prev->need_resched;
#ifdef CONFIG_SMP
if ((prev->state == TASK_RUNNING) &&
(prev != idle_task(smp_processor_id()))) {
unsigned long flags;
spin_lock_irqsave(&runqueue_lock, flags);
prev->has_cpu = 0;
reschedule_idle(prev, flags); // spin_unlocks runqueue
} else {
wmb();
prev->has_cpu = 0;
}
#endif /* CONFIG_SMP */
}
void schedule_tail(struct task_struct *prev)
{
__schedule_tail(prev);
}
/*
* 'schedule()' is the scheduler function. It's a very simple and nice
* scheduler: it's not perfect, but certainly works for most things.
*
* The goto is "interesting".
*
* NOTE!! Task 0 is the 'idle' task, which gets called when no other
* tasks can run. It can not be killed, and it cannot sleep. The 'state'
* information in task[0] is never used.
*/
asmlinkage void schedule(void)
{
struct schedule_data * sched_data;
struct task_struct *prev, *next, *p;
struct list_head *tmp;
int this_cpu, c;
if (!current->active_mm) BUG();
if (tq_scheduler)
goto handle_tq_scheduler;
tq_scheduler_back:
prev = current;
this_cpu = prev->processor;
if (in_interrupt())
goto scheduling_in_interrupt;
release_kernel_lock(prev, this_cpu);
/* Do "administrative" work here while we don't hold any locks */
if (softirq_state[this_cpu].active & softirq_state[this_cpu].mask)
goto handle_softirq;
handle_softirq_back:
/*
* 'sched_data' is protected by the fact that we can run
* only one process per CPU.
*/
sched_data = & aligned_data[this_cpu].schedule_data;
spin_lock_irq(&runqueue_lock);
/* move an exhausted RR process to be last.. */
if (prev->policy == SCHED_RR)
goto move_rr_last;
move_rr_back:
switch (prev->state & ~TASK_EXCLUSIVE) {
case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {
prev->state = TASK_RUNNING;
break;
}
default:
del_from_runqueue(prev);
case TASK_RUNNING:
}
prev->need_resched = 0;
/*
* this is the scheduler proper:
*/
repeat_schedule:
/*
* Default process to select..
*/
next = idle_task(this_cpu);
c = -1000;
if (prev->state == TASK_RUNNING)
goto still_running;
still_running_back:
list_for_each(tmp, &runqueue_head) {
p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {
int weight = goodness(p, this_cpu, prev->active_mm);
if (weight > c)
c = weight, next = p;
}
}
/* Do we need to re-calculate counters? */
if (!c)
goto recalculate;
/*
* from this point on nothing can prevent us from
* switching to the next task, save this fact in
* sched_data.
*/
sched_data->curr = next;
#ifdef CONFIG_SMP
next->has_cpu = 1;
next->processor = this_cpu;
#endif
spin_unlock_irq(&runqueue_lock);
if (prev == next)
goto same_process;
#ifdef CONFIG_SMP
/*
* maintain the per-process 'average timeslice' value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP,
* and it's approximate, so we do not have to maintain
* it while holding the runqueue spinlock.
*/
{
cycles_t t, this_slice;
t = get_cycles();
this_slice = t - sched_data->last_schedule;
sched_data->last_schedule = t;
}
/*
* We drop the scheduler lock early (it's a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/
#endif /* CONFIG_SMP */
kstat.context_swtch++;
/*
* there are 3 processes which are affected by a context switch:
*
* prev == .... ==> (last => next)
*
* It's the 'much more previous' 'prev' that is on next's stack,
* but prev is set to (the just run) 'last' process by switch_to().
* This might sound slightly confusing but makes tons of sense.
*/
prepare_to_switch();
{
struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (!mm) {
if (next->active_mm) BUG();
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, this_cpu);
} else {
if (next->active_mm != mm) BUG();
switch_mm(oldmm, mm, next, this_cpu);
}
if (!prev->mm) {
prev->active_mm = NULL;
mmdrop(oldmm);
}
}
/*
* This just switches the register state and the
* stack.
*/
switch_to(prev, next, prev);
__schedule_tail(prev);
same_process:
reacquire_kernel_lock(current);
return;
recalculate:
{
struct task_struct *p;
spin_unlock_irq(&runqueue_lock);
read_lock(&tasklist_lock);
for_each_task(p)
p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
read_unlock(&tasklist_lock);
spin_lock_irq(&runqueue_lock);
}
goto repeat_schedule;
still_running:
c = prev_goodness(prev, this_cpu, prev->active_mm);
next = prev;
goto still_running_back;
handle_softirq:
do_softirq();
goto handle_softirq_back;
handle_tq_scheduler:
/*
* do not run the task queue with disabled interrupts,
* cli() wouldn't work on SMP
*/
sti();
run_task_queue(&tq_scheduler);
goto tq_scheduler_back;
move_rr_last:
if (!prev->counter) {
prev->counter = NICE_TO_TICKS(prev->nice);
move_last_runqueue(prev);
}
goto move_rr_back;
scheduling_in_interrupt:
printk("Scheduling in interrupt\n");
BUG();
return;
}
static inline void __wake_up_common (wait_queue_head_t *q, unsigned int mode,
const int sync)
{
struct list_head *tmp, *head;
struct task_struct *p, *best_exclusive;
unsigned long flags;
int best_cpu, irq;
if (!q)
goto out;
best_cpu = smp_processor_id();
irq = in_interrupt();
best_exclusive = NULL;
wq_write_lock_irqsave(&q->lock, flags);
#if WAITQUEUE_DEBUG
CHECK_MAGIC_WQHEAD(q);
#endif
head = &q->task_list;
#if WAITQUEUE_DEBUG
if (!head->next || !head->prev)
WQ_BUG();
#endif
tmp = head->next;
while (tmp != head) {
unsigned int state;
wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
tmp = tmp->next;
#if WAITQUEUE_DEBUG
CHECK_MAGIC(curr->__magic);
#endif
p = curr->task;
state = p->state;
if (state & (mode & ~TASK_EXCLUSIVE)) {
#if WAITQUEUE_DEBUG
curr->__waker = (long)__builtin_return_address(0);
#endif
/*
* If waking up from an interrupt context then
* prefer processes which are affine to this
* CPU.
*/
if (irq && (state & mode & TASK_EXCLUSIVE)) {
if (!best_exclusive)
best_exclusive = p;
else if ((p->processor == best_cpu) &&
(best_exclusive->processor != best_cpu))
best_exclusive = p;
} else {
if (sync)
wake_up_process_synchronous(p);
else
wake_up_process(p);
if (state & mode & TASK_EXCLUSIVE)
break;
}
}
}
if (best_exclusive)
best_exclusive->state = TASK_RUNNING;
wq_write_unlock_irqrestore(&q->lock, flags);
if (best_exclusive) {
if (sync)
wake_up_process_synchronous(best_exclusive);
else
wake_up_process(best_exclusive);
}
out:
return;
}
void __wake_up(wait_queue_head_t *q, unsigned int mode)
{
__wake_up_common(q, mode, 0);
}
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode)
{
__wake_up_common(q, mode, 1);
}
#define SLEEP_ON_VAR \
unsigned long flags; \
wait_queue_t wait; \
init_waitqueue_entry(&wait, current);
#define SLEEP_ON_HEAD \
wq_write_lock_irqsave(&q->lock,flags); \
__add_wait_queue(q, &wait); \
wq_write_unlock(&q->lock);
#define SLEEP_ON_TAIL \
wq_write_lock_irq(&q->lock); \
__remove_wait_queue(q, &wait); \
wq_write_unlock_irqrestore(&q->lock,flags);
void interruptible_sleep_on(wait_queue_head_t *q)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void sleep_on(wait_queue_head_t *q)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void scheduling_functions_end_here(void) { }
#ifndef __alpha__
/*
* This has been replaced by sys_setpriority. Maybe it should be
* moved into the arch dependent tree for those ports that require
* it for backward compatibility?
*/
asmlinkage long sys_nice(int increment)
{
long newprio;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
if (increment < 0) {
if (!capable(CAP_SYS_NICE))
return -EPERM;
if (increment < -40)
increment = -40;
}
if (increment > 40)
increment = 40;
newprio = current->nice + increment;
if (newprio < -20)
newprio = -20;
if (newprio > 19)
newprio = 19;
current->nice = newprio;
return 0;
}
#endif
static inline struct task_struct *find_process_by_pid(pid_t pid)
{
struct task_struct *tsk = current;
if (pid)
tsk = find_task_by_pid(pid);
return tsk;
}
static int setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
struct sched_param lp;
struct task_struct *p;
int retval;
retval = -EINVAL;
if (!param || pid < 0)
goto out_nounlock;
retval = -EFAULT;
if (copy_from_user(&lp, param, sizeof(struct sched_param)))
goto out_nounlock;
/*
* We play safe to avoid deadlocks.
*/
spin_lock_irq(&runqueue_lock);
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
if (policy < 0)
policy = p->policy;
else {
retval = -EINVAL;
if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_OTHER)
goto out_unlock;
}
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
* priority for SCHED_OTHER is 0.
*/
retval = -EINVAL;
if (lp.sched_priority < 0 || lp.sched_priority > 99)
goto out_unlock;
if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
goto out_unlock;
retval = -EPERM;
if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
retval = 0;
p->policy = policy;
p->rt_priority = lp.sched_priority;
if (task_on_runqueue(p))
move_first_runqueue(p);
current->need_resched = 1;
out_unlock:
read_unlock(&tasklist_lock);
spin_unlock_irq(&runqueue_lock);
out_nounlock:
return retval;
}
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
return setscheduler(pid, policy, param);
}
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
{
return setscheduler(pid, -1, param);
}
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
struct task_struct *p;
int retval;
retval = -EINVAL;
if (pid < 0)
goto out_nounlock;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (p)
retval = p->policy & ~SCHED_YIELD;
read_unlock(&tasklist_lock);
out_nounlock:
return retval;
}
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
{
struct task_struct *p;
struct sched_param lp;
int retval;
retval = -EINVAL;
if (!param || pid < 0)
goto out_nounlock;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
lp.sched_priority = p->rt_priority;
read_unlock(&tasklist_lock);
/*
* This one might sleep, we cannot do it with a spinlock held ...
*/
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
out_nounlock:
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
asmlinkage long sys_sched_yield(void)
{
spin_lock_irq(&runqueue_lock);
if (current->policy == SCHED_OTHER)
current->policy |= SCHED_YIELD;
current->need_resched = 1;
move_last_runqueue(current);
spin_unlock_irq(&runqueue_lock);
return 0;
}
asmlinkage long sys_sched_get_priority_max(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 99;
break;
case SCHED_OTHER:
ret = 0;
break;
}
return ret;
}
asmlinkage long sys_sched_get_priority_min(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_OTHER:
ret = 0;
}
return ret;
}
asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
struct timespec t;
struct task_struct *p;
int retval = -EINVAL;
if (pid < 0)
goto out_nounlock;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (p)
jiffies_to_timespec(p->policy & SCHED_FIFO ? 0 : NICE_TO_TICKS(p->nice),
&t);
read_unlock(&tasklist_lock);
if (p)
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
return retval;
}
static void show_task(struct task_struct * p)
{
unsigned long free = 0;
int state;
static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
printk("%-8s ", p->comm);
state = p->state ? ffz(~p->state) + 1 : 0;
if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
printk(stat_nam[state]);
else
printk(" ");
#if (BITS_PER_LONG == 32)
if (p == current)
printk(" current ");
else
printk(" %08lX ", thread_saved_pc(&p->thread));
#else
if (p == current)
printk(" current task ");
else
printk(" %016lx ", thread_saved_pc(&p->thread));
#endif
{
unsigned long * n = (unsigned long *) (p+1);
while (!*n)
n++;
free = (unsigned long) n - (unsigned long)(p+1);
}
printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
if (p->p_cptr)
printk("%5d ", p->p_cptr->pid);
else
printk(" ");
if (!p->mm)
printk(" (L-TLB) ");
else
printk(" (NOTLB) ");
if (p->p_ysptr)
printk("%7d", p->p_ysptr->pid);
else
printk(" ");
if (p->p_osptr)
printk(" %5d\n", p->p_osptr->pid);
else
printk("\n");
{
struct signal_queue *q;
char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1];
render_sigset_t(&p->signal, s);
render_sigset_t(&p->blocked, b);
printk(" sig: %d %s %s :", signal_pending(p), s, b);
for (q = p->sigqueue; q ; q = q->next)
printk(" %d", q->info.si_signo);
printk(" X\n");
}
}
char * render_sigset_t(sigset_t *set, char *buffer)
{
int i = _NSIG, x;
do {
i -= 4, x = 0;
if (sigismember(set, i+1)) x |= 1;
if (sigismember(set, i+2)) x |= 2;
if (sigismember(set, i+3)) x |= 4;
if (sigismember(set, i+4)) x |= 8;
*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
} while (i >= 4);
*buffer = 0;
return buffer;
}
void show_state(void)
{
struct task_struct *p;
#if (BITS_PER_LONG == 32)
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#else
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#endif
read_lock(&tasklist_lock);
for_each_task(p)
show_task(p);
read_unlock(&tasklist_lock);
}
/*
* Put all the gunge required to become a kernel thread without
* attached user resources in one place where it belongs.
*/
void daemonize(void)
{
struct fs_struct *fs;
/*
* If we were started as result of loading a module, close all of the
* user space pages. We don't need them, and if we didn't close them
* they would be locked into memory.
*/
exit_mm(current);
current->session = 1;
current->pgrp = 1;
/* Become as one with the init task */
exit_fs(current); /* current->fs->count--; */
fs = init_task.fs;
current->fs = fs;
atomic_inc(&fs->count);
}
void __init init_idle(void)
{
struct schedule_data * sched_data;
sched_data = &aligned_data[smp_processor_id()].schedule_data;
if (current != &init_task && task_on_runqueue(current)) {
printk("UGH! (%d:%d) was on the runqueue, removing.\n",
smp_processor_id(), current->pid);
del_from_runqueue(current);
}
sched_data->curr = current;
sched_data->last_schedule = get_cycles();
}
extern void init_timervecs (void);
void __init sched_init(void)
{
/*
* We have to do a little magic to get the first
* process right in SMP mode.
*/
int cpu = smp_processor_id();
int nr;
init_task.processor = cpu;
for(nr = 0; nr < PIDHASH_SZ; nr++)
pidhash[nr] = NULL;
init_timervecs();
init_bh(TIMER_BH, timer_bh);
init_bh(TQUEUE_BH, tqueue_bh);
init_bh(IMMEDIATE_BH, immediate_bh);
/*
* The boot idle thread does lazy MMU switching as well:
*/
atomic_inc(&init_mm.mm_count);
enter_lazy_tlb(&init_mm, current, cpu);
}
|