summaryrefslogtreecommitdiffstats
path: root/kernel/timer.c
blob: 7688a56a450a92e42df40dd434d0d66a354a6b40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/*
 *  linux/kernel/timer.c
 *
 *  Kernel internal timers, kernel timekeeping, basic process system calls
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/timex.h>
#include <linux/delay.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>

#include <asm/uaccess.h>

/*
 * Timekeeping variables
 */

long tick = (1000000 + HZ/2) / HZ;	/* timer interrupt period */

/* The current time */
volatile struct timeval xtime __attribute__ ((aligned (16)));

/* Don't completely fail for HZ > 500.  */
int tickadj = 500/HZ ? : 1;		/* microsecs */

DECLARE_TASK_QUEUE(tq_timer);
DECLARE_TASK_QUEUE(tq_immediate);
DECLARE_TASK_QUEUE(tq_scheduler);

/*
 * phase-lock loop variables
 */
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_OK;		/* clock synchronization status	*/
int time_status = STA_UNSYNC;		/* clock status bits		*/
long time_offset;			/* time adjustment (us)		*/
long time_constant = 2;			/* pll time constant		*/
long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/
long time_precision = 1;		/* clock precision (us)		*/
long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
long time_phase;			/* phase offset (scaled us)	*/
long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC;
					/* frequency offset (scaled ppm)*/
long time_adj;				/* tick adjust (scaled 1 / HZ)	*/
long time_reftime;			/* time at last adjustment (s)	*/

long time_adjust;
long time_adjust_step;

unsigned long event;

extern int do_setitimer(int, struct itimerval *, struct itimerval *);

unsigned long volatile jiffies;

unsigned int * prof_buffer;
unsigned long prof_len;
unsigned long prof_shift;

/*
 * Event timer code
 */
#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

struct timer_vec {
	int index;
	struct list_head vec[TVN_SIZE];
};

struct timer_vec_root {
	int index;
	struct list_head vec[TVR_SIZE];
};

static struct timer_vec tv5;
static struct timer_vec tv4;
static struct timer_vec tv3;
static struct timer_vec tv2;
static struct timer_vec_root tv1;

static struct timer_vec * const tvecs[] = {
	(struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
};

#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))

void init_timervecs (void)
{
	int i;

	for (i = 0; i < TVN_SIZE; i++) {
		INIT_LIST_HEAD(tv5.vec + i);
		INIT_LIST_HEAD(tv4.vec + i);
		INIT_LIST_HEAD(tv3.vec + i);
		INIT_LIST_HEAD(tv2.vec + i);
	}
	for (i = 0; i < TVR_SIZE; i++)
		INIT_LIST_HEAD(tv1.vec + i);
}

static unsigned long timer_jiffies;

static inline void internal_add_timer(struct timer_list *timer)
{
	/*
	 * must be cli-ed when calling this
	 */
	unsigned long expires = timer->expires;
	unsigned long idx = expires - timer_jiffies;
	struct list_head * vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec =  tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/* can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = tv1.vec + tv1.index;
	} else if (idx <= 0xffffffffUL) {
		int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = tv5.vec + i;
	} else {
		/* Can only get here on architectures with 64-bit jiffies */
		INIT_LIST_HEAD(&timer->list);
		return;
	}
	/*
	 * Timers are FIFO!
	 */
	list_add(&timer->list, vec->prev);
}

/* Initialize both explicitly - let's try to have them in the same cache line */
spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;
volatile struct timer_list * volatile running_timer = NULL;

#ifdef CONFIG_SMP
#define timer_enter(t) do { running_timer = t; mb(); } while (0)
#define timer_exit() do { running_timer = NULL; } while (0)
#define timer_is_running(t) (running_timer == t)
#define timer_synchronize(t) while (timer_is_running(t)) barrier()
#else
#define timer_enter(t)		do { } while (0)
#define timer_exit()		do { } while (0)
#define timer_is_running(t)	(0)
#define timer_synchronize(t)	do { (void)(t); barrier(); } while(0)
#endif

void add_timer(struct timer_list *timer)
{
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	if (timer->list.next)
		goto bug;
	internal_add_timer(timer);
out:
	spin_unlock_irqrestore(&timerlist_lock, flags);
	return;

bug:
	printk("bug: kernel timer added twice at %p.\n",
			__builtin_return_address(0));
	goto out;
}

static inline int detach_timer (struct timer_list *timer)
{
	if (!timer_pending(timer))
		return 0;
	list_del(&timer->list);
	return 1;
}

int mod_timer(struct timer_list *timer, unsigned long expires)
{
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	timer->expires = expires;
	ret = detach_timer(timer);
	internal_add_timer(timer);
	spin_unlock_irqrestore(&timerlist_lock, flags);
	return ret;
}

int del_timer(struct timer_list * timer)
{
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	ret = detach_timer(timer);
	timer->list.next = timer->list.prev = NULL;
	spin_unlock_irqrestore(&timerlist_lock, flags);
	return ret;
}

#ifdef CONFIG_SMP
void sync_timers(void)
{
	spin_unlock_wait(&global_bh_lock);
}

/*
 * SMP specific function to delete periodic timer.
 * Caller must disable by some means restarting the timer
 * for new. Upon exit the timer is not queued and handler is not running
 * on any CPU. It returns number of times, which timer was deleted
 * (for reference counting).
 */

int del_timer_sync(struct timer_list * timer)
{
	int ret = 0;

	for (;;) {
		unsigned long flags;
		int running;

		spin_lock_irqsave(&timerlist_lock, flags);
		ret += detach_timer(timer);
		timer->list.next = timer->list.prev = 0;
		running = timer_is_running(timer);
		spin_unlock_irqrestore(&timerlist_lock, flags);

		if (!running)
			break;

		timer_synchronize(timer);
	}

	return ret;
}
#endif


static inline void cascade_timers(struct timer_vec *tv)
{
	/* cascade all the timers from tv up one level */
	struct list_head *head, *curr, *next;

	head = tv->vec + tv->index;
	curr = head->next;
	/*
	 * We are removing _all_ timers from the list, so we don't  have to
	 * detach them individually, just clear the list afterwards.
	 */
	while (curr != head) {
		struct timer_list *tmp;

		tmp = list_entry(curr, struct timer_list, list);
		next = curr->next;
		list_del(curr); // not needed
		internal_add_timer(tmp);
		curr = next;
	}
	INIT_LIST_HEAD(head);
	tv->index = (tv->index + 1) & TVN_MASK;
}

static inline void run_timer_list(void)
{
	spin_lock_irq(&timerlist_lock);
	while ((long)(jiffies - timer_jiffies) >= 0) {
		struct list_head *head, *curr;
		if (!tv1.index) {
			int n = 1;
			do {
				cascade_timers(tvecs[n]);
			} while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
		}
repeat:
		head = tv1.vec + tv1.index;
		curr = head->next;
		if (curr != head) {
			struct timer_list *timer;
			void (*fn)(unsigned long);
			unsigned long data;

			timer = list_entry(curr, struct timer_list, list);
 			fn = timer->function;
 			data= timer->data;

			detach_timer(timer);
			timer->list.next = timer->list.prev = NULL;
			timer_enter(timer);
			spin_unlock_irq(&timerlist_lock);
			fn(data);
			spin_lock_irq(&timerlist_lock);
			timer_exit();
			goto repeat;
		}
		++timer_jiffies; 
		tv1.index = (tv1.index + 1) & TVR_MASK;
	}
	spin_unlock_irq(&timerlist_lock);
}

spinlock_t tqueue_lock = SPIN_LOCK_UNLOCKED;

void tqueue_bh(void)
{
	run_task_queue(&tq_timer);
}

void immediate_bh(void)
{
	run_task_queue(&tq_immediate);
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 */
static void second_overflow(void)
{
    long ltemp;

    /* Bump the maxerror field */
    time_maxerror += time_tolerance >> SHIFT_USEC;
    if ( time_maxerror > NTP_PHASE_LIMIT ) {
	time_maxerror = NTP_PHASE_LIMIT;
	time_status |= STA_UNSYNC;
    }

    /*
     * Leap second processing. If in leap-insert state at
     * the end of the day, the system clock is set back one
     * second; if in leap-delete state, the system clock is
     * set ahead one second. The microtime() routine or
     * external clock driver will insure that reported time
     * is always monotonic. The ugly divides should be
     * replaced.
     */
    switch (time_state) {

    case TIME_OK:
	if (time_status & STA_INS)
	    time_state = TIME_INS;
	else if (time_status & STA_DEL)
	    time_state = TIME_DEL;
	break;

    case TIME_INS:
	if (xtime.tv_sec % 86400 == 0) {
	    xtime.tv_sec--;
	    time_state = TIME_OOP;
	    printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
	}
	break;

    case TIME_DEL:
	if ((xtime.tv_sec + 1) % 86400 == 0) {
	    xtime.tv_sec++;
	    time_state = TIME_WAIT;
	    printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
	}
	break;

    case TIME_OOP:
	time_state = TIME_WAIT;
	break;

    case TIME_WAIT:
	if (!(time_status & (STA_INS | STA_DEL)))
	    time_state = TIME_OK;
    }

    /*
     * Compute the phase adjustment for the next second. In
     * PLL mode, the offset is reduced by a fixed factor
     * times the time constant. In FLL mode the offset is
     * used directly. In either mode, the maximum phase
     * adjustment for each second is clamped so as to spread
     * the adjustment over not more than the number of
     * seconds between updates.
     */
    if (time_offset < 0) {
	ltemp = -time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset += ltemp;
	time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    } else {
	ltemp = time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset -= ltemp;
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    }

    /*
     * Compute the frequency estimate and additional phase
     * adjustment due to frequency error for the next
     * second. When the PPS signal is engaged, gnaw on the
     * watchdog counter and update the frequency computed by
     * the pll and the PPS signal.
     */
    pps_valid++;
    if (pps_valid == PPS_VALID) {	/* PPS signal lost */
	pps_jitter = MAXTIME;
	pps_stabil = MAXFREQ;
	time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
			 STA_PPSWANDER | STA_PPSERROR);
    }
    ltemp = time_freq + pps_freq;
    if (ltemp < 0)
	time_adj -= -ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
    else
	time_adj += ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);

#if HZ == 100
    /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
     * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
     */
    if (time_adj < 0)
	time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    else
	time_adj += (time_adj >> 2) + (time_adj >> 5);
#endif
}

/* in the NTP reference this is called "hardclock()" */
static void update_wall_time_one_tick(void)
{
	if ( (time_adjust_step = time_adjust) != 0 ) {
	    /* We are doing an adjtime thing. 
	     *
	     * Prepare time_adjust_step to be within bounds.
	     * Note that a positive time_adjust means we want the clock
	     * to run faster.
	     *
	     * Limit the amount of the step to be in the range
	     * -tickadj .. +tickadj
	     */
	     if (time_adjust > tickadj)
		time_adjust_step = tickadj;
	     else if (time_adjust < -tickadj)
		time_adjust_step = -tickadj;
	     
	    /* Reduce by this step the amount of time left  */
	    time_adjust -= time_adjust_step;
	}
	xtime.tv_usec += tick + time_adjust_step;
	/*
	 * Advance the phase, once it gets to one microsecond, then
	 * advance the tick more.
	 */
	time_phase += time_adj;
	if (time_phase <= -FINEUSEC) {
		long ltemp = -time_phase >> SHIFT_SCALE;
		time_phase += ltemp << SHIFT_SCALE;
		xtime.tv_usec -= ltemp;
	}
	else if (time_phase >= FINEUSEC) {
		long ltemp = time_phase >> SHIFT_SCALE;
		time_phase -= ltemp << SHIFT_SCALE;
		xtime.tv_usec += ltemp;
	}
}

/*
 * Using a loop looks inefficient, but "ticks" is
 * usually just one (we shouldn't be losing ticks,
 * we're doing this this way mainly for interrupt
 * latency reasons, not because we think we'll
 * have lots of lost timer ticks
 */
static void update_wall_time(unsigned long ticks)
{
	do {
		ticks--;
		update_wall_time_one_tick();
	} while (ticks);

	if (xtime.tv_usec >= 1000000) {
	    xtime.tv_usec -= 1000000;
	    xtime.tv_sec++;
	    second_overflow();
	}
}

static inline void do_process_times(struct task_struct *p,
	unsigned long user, unsigned long system)
{
	unsigned long psecs;

	psecs = (p->times.tms_utime += user);
	psecs += (p->times.tms_stime += system);
	if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
		/* Send SIGXCPU every second.. */
		if (!(psecs % HZ))
			send_sig(SIGXCPU, p, 1);
		/* and SIGKILL when we go over max.. */
		if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
			send_sig(SIGKILL, p, 1);
	}
}

static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
{
	unsigned long it_virt = p->it_virt_value;

	if (it_virt) {
		if (it_virt <= ticks) {
			it_virt = ticks + p->it_virt_incr;
			send_sig(SIGVTALRM, p, 1);
		}
		p->it_virt_value = it_virt - ticks;
	}
}

static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
{
	unsigned long it_prof = p->it_prof_value;

	if (it_prof) {
		if (it_prof <= ticks) {
			it_prof = ticks + p->it_prof_incr;
			send_sig(SIGPROF, p, 1);
		}
		p->it_prof_value = it_prof - ticks;
	}
}

void update_one_process(struct task_struct *p,
	unsigned long ticks, unsigned long user, unsigned long system, int cpu)
{
	p->per_cpu_utime[cpu] += user;
	p->per_cpu_stime[cpu] += system;
	do_process_times(p, user, system);
	do_it_virt(p, user);
	do_it_prof(p, ticks);
}	

/*
 * Called from the timer interrupt handler to charge one tick to the current 
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
static void update_process_times(int user_tick)
{
/*
 * SMP does this on a per-CPU basis elsewhere
 */
#ifndef  CONFIG_SMP
	struct task_struct *p = current;
	int system = !user_tick;

	if (p->pid) {
		if (--p->counter <= 0) {
			p->counter = 0;
			p->need_resched = 1;
		}
		if (p->nice > 0)
			kstat.cpu_nice += user_tick;
		else
			kstat.cpu_user += user_tick;
		kstat.cpu_system += system;
	} else if (local_bh_count(0) || local_irq_count(0) > 1)
		kstat.cpu_system += system;
	update_one_process(p, 1, user_tick, system, 0);
#endif
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
	struct task_struct *p;
	unsigned long nr = 0;

	read_lock(&tasklist_lock);
	for_each_task(p) {
		if ((p->state == TASK_RUNNING ||
		     (p->state & TASK_UNINTERRUPTIBLE)))
			nr += FIXED_1;
	}
	read_unlock(&tasklist_lock);
	return nr;
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 */
unsigned long avenrun[3];

static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;
	if (count < 0) {
		count += LOAD_FREQ;
		active_tasks = count_active_tasks();
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
	}
}

/* jiffies at the most recent update of wall time */
unsigned long wall_jiffies;

/*
 * This spinlock protect us from races in SMP while playing with xtime. -arca
 */
rwlock_t xtime_lock = RW_LOCK_UNLOCKED;

static inline void update_times(void)
{
	unsigned long ticks;

	/*
	 * update_times() is run from the raw timer_bh handler so we
	 * just know that the irqs are locally enabled and so we don't
	 * need to save/restore the flags of the local CPU here. -arca
	 */
	write_lock_irq(&xtime_lock);

	ticks = jiffies - wall_jiffies;
	if (ticks) {
		wall_jiffies += ticks;
		update_wall_time(ticks);
	}
	write_unlock_irq(&xtime_lock);
	calc_load(ticks);
}

void timer_bh(void)
{
	update_times();
	run_timer_list();
}

void do_timer(struct pt_regs *regs)
{
	(*(unsigned long *)&jiffies)++;
	update_process_times(user_mode(regs));
	mark_bh(TIMER_BH);
	if (tq_timer)
		mark_bh(TQUEUE_BH);
}

#if !defined(__alpha__) && !defined(__ia64__)

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
	struct itimerval it_new, it_old;
	unsigned int oldalarm;

	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	do_setitimer(ITIMER_REAL, &it_new, &it_old);
	oldalarm = it_old.it_value.tv_sec;
	/* ehhh.. We can't return 0 if we have an alarm pending.. */
	/* And we'd better return too much than too little anyway */
	if (it_old.it_value.tv_usec)
		oldalarm++;
	return oldalarm;
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */
 
asmlinkage long sys_getpid(void)
{
	/* This is SMP safe - current->pid doesn't change */
	return current->pid;
}

/*
 * This is not strictly SMP safe: p_opptr could change
 * from under us. However, rather than getting any lock
 * we can use an optimistic algorithm: get the parent
 * pid, and go back and check that the parent is still
 * the same. If it has changed (which is extremely unlikely
 * indeed), we just try again..
 *
 * NOTE! This depends on the fact that even if we _do_
 * get an old value of "parent", we can happily dereference
 * the pointer: we just can't necessarily trust the result
 * until we know that the parent pointer is valid.
 *
 * The "mb()" macro is a memory barrier - a synchronizing
 * event. It also makes sure that gcc doesn't optimize
 * away the necessary memory references.. The barrier doesn't
 * have to have all that strong semantics: on x86 we don't
 * really require a synchronizing instruction, for example.
 * The barrier is more important for code generation than
 * for any real memory ordering semantics (even if there is
 * a small window for a race, using the old pointer is
 * harmless for a while).
 */
asmlinkage long sys_getppid(void)
{
	int pid;
	struct task_struct * me = current;
	struct task_struct * parent;

	parent = me->p_opptr;
	for (;;) {
		pid = parent->pid;
#if CONFIG_SMP
{
		struct task_struct *old = parent;
		mb();
		parent = me->p_opptr;
		if (old != parent)
			continue;
}
#endif
		break;
	}
	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{
	struct timespec t;
	unsigned long expire;

	if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
		return -EFAULT;

	if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
		return -EINVAL;


	if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
	    current->policy != SCHED_OTHER)
	{
		/*
		 * Short delay requests up to 2 ms will be handled with
		 * high precision by a busy wait for all real-time processes.
		 *
		 * Its important on SMP not to do this holding locks.
		 */
		udelay((t.tv_nsec + 999) / 1000);
		return 0;
	}

	expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);

	current->state = TASK_INTERRUPTIBLE;
	expire = schedule_timeout(expire);

	if (expire) {
		if (rmtp) {
			jiffies_to_timespec(expire, &t);
			if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
				return -EFAULT;
		}
		return -EINTR;
	}
	return 0;
}