1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
/*
* linux/mm/initmem.c
*
* Copyright (C) 1999 Ingo Molnar
*
* simple boot-time physical memory area allocator and
* free memory collector. It's used to deal with reserved
* system memory and memory holes as well.
*/
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <asm/dma.h>
/*
* Pointer to a bitmap - the bits represent all physical memory pages
* from physical address 0 to physical address end_mem.
*
* Access to this subsystem has to be serialized externally. (this is
* true for the boot process anyway)
*/
unsigned long max_low_pfn;
static void * bootmem_map = NULL;
/*
* Called once to set up the allocator itself.
*/
unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
{
unsigned long mapsize = (pages+7)/8;
bootmem_map = phys_to_virt(start << PAGE_SHIFT);
max_low_pfn = pages;
/*
* Initially all pages are reserved - setup_arch() has to
* register free RAM areas explicitly.
*/
memset(bootmem_map, 0xff, mapsize);
return mapsize;
}
/*
* Marks a particular physical memory range as usable. Usable RAM
* might be used for boot-time allocations - or it might get added
* to the free page pool later on.
*/
void __init reserve_bootmem (unsigned long addr, unsigned long size)
{
unsigned long i;
/*
* round up, partially reserved pages are considered
* fully reserved.
*/
unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
if (!size) BUG();
if (end > max_low_pfn)
BUG();
for (i = addr/PAGE_SIZE; i < end; i++)
if (test_and_set_bit(i, bootmem_map))
BUG();
}
void __init free_bootmem (unsigned long addr, unsigned long size)
{
unsigned long i;
unsigned long start;
/*
* round down end of usable mem, partially free pages are
* considered reserved.
*/
unsigned long end = (addr + size)/PAGE_SIZE;
if (!size) BUG();
if (end > max_low_pfn)
BUG();
/*
* Round up the beginning of the address.
*/
start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
for (i = start; i < end; i++) {
if (!test_and_clear_bit(i, bootmem_map))
BUG();
}
}
/*
* We 'merge' subsequent allocations to save space. We might 'lose'
* some fraction of a page if allocations cannot be satisfied due to
* size constraints on boxes where there is physical RAM space
* fragmentation - in these cases * (mostly large memory boxes) this
* is not a problem.
*
* On low memory boxes we get it right in 100% of the cases.
*/
static unsigned long last_pos = 0;
static unsigned long last_offset = 0;
/*
* alignment has to be a power of 2 value.
*/
void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal)
{
int area = 0;
unsigned long i, start = 0, reserved;
void *ret;
unsigned long offset, remaining_size;
unsigned long areasize, preferred;
if (!size) BUG();
/*
* We try to allocate bootmem pages above 'goal'
* first, then we try to allocate lower pages.
*/
if (goal) {
preferred = goal >> PAGE_SHIFT;
if (preferred >= max_low_pfn)
preferred = 0;
} else
preferred = 0;
areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
restart_scan:
for (i = preferred; i < max_low_pfn; i++) {
reserved = test_bit(i, bootmem_map);
if (!reserved) {
if (!area) {
area = 1;
start = i;
}
if (i - start + 1 == areasize)
goto found;
} else {
area = 0;
start = -1;
}
}
if (preferred) {
preferred = 0;
goto restart_scan;
}
/*
* Whoops, we cannot satisfy the allocation request.
*/
BUG();
found:
if (start >= max_low_pfn)
BUG();
/*
* Is the next page of the previous allocation-end the start
* of this allocation's buffer? If yes then we can 'merge'
* the previous partial page with this allocation.
*/
if (last_offset && (last_pos+1 == start)) {
offset = (last_offset+align-1) & ~(align-1);
if (offset > PAGE_SIZE)
BUG();
remaining_size = PAGE_SIZE-offset;
if (remaining_size > PAGE_SIZE)
BUG();
if (size < remaining_size) {
areasize = 0;
// last_pos unchanged
last_offset = offset+size;
ret = phys_to_virt(last_pos*PAGE_SIZE + offset);
} else {
size -= remaining_size;
areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
ret = phys_to_virt(last_pos*PAGE_SIZE + offset);
last_pos = start+areasize-1;
last_offset = size;
}
last_offset &= ~PAGE_MASK;
} else {
last_pos = start + areasize - 1;
last_offset = size & ~PAGE_MASK;
ret = phys_to_virt(start * PAGE_SIZE);
}
/*
* Reserve the area now:
*/
for (i = start; i < start+areasize; i++)
if (test_and_set_bit(i, bootmem_map))
BUG();
return ret;
}
unsigned long __init free_all_bootmem (void)
{
struct page * page;
unsigned long i, count, total = 0;
if (!bootmem_map) BUG();
page = mem_map;
count = 0;
for (i = 0; i < max_low_pfn; i++, page++) {
if (!test_bit(i, bootmem_map)) {
count++;
ClearPageReserved(page);
set_page_count(page, 1);
if (i >= (virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT))
clear_bit(PG_DMA, &page->flags);
__free_page(page);
}
}
total += count;
/*
* Now free the allocator bitmap itself, it's not
* needed anymore:
*/
page = mem_map + MAP_NR(bootmem_map);
count = 0;
for (i = 0; i < (max_low_pfn/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
count++;
ClearPageReserved(page);
set_page_count(page, 1);
__free_page(page);
}
total += count;
bootmem_map = NULL;
return total;
}
|