1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
|
/*
* linux/mm/memory.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*/
/*
* demand-loading started 01.12.91 - seems it is high on the list of
* things wanted, and it should be easy to implement. - Linus
*/
/*
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
* pages started 02.12.91, seems to work. - Linus.
*
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
* would have taken more than the 6M I have free, but it worked well as
* far as I could see.
*
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
*/
/*
* Real VM (paging to/from disk) started 18.12.91. Much more work and
* thought has to go into this. Oh, well..
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
* Found it. Everything seems to work now.
* 20.12.91 - Ok, making the swap-device changeable like the root.
*/
/*
* 05.04.94 - Multi-page memory management added for v1.1.
* Idea by Alex Bligh (alex@cconcepts.co.uk)
*
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
* (Gerhard.Wichert@pdb.siemens.de)
*/
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/smp_lock.h>
#include <linux/swapctl.h>
#include <linux/iobuf.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
unsigned long max_mapnr;
unsigned long num_physpages;
void * high_memory;
struct page *highmem_start_page;
/*
* We special-case the C-O-W ZERO_PAGE, because it's such
* a common occurrence (no need to read the page to know
* that it's zero - better for the cache and memory subsystem).
*/
static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
{
if (from == ZERO_PAGE(address)) {
clear_user_highpage(to, address);
return;
}
copy_user_highpage(to, from, address);
}
mem_map_t * mem_map = NULL;
/*
* Note: this doesn't free the actual pages themselves. That
* has been handled earlier when unmapping all the memory regions.
*/
static inline void free_one_pmd(pmd_t * dir)
{
pte_t * pte;
if (pmd_none(*dir))
return;
if (pmd_bad(*dir)) {
pmd_ERROR(*dir);
pmd_clear(dir);
return;
}
pte = pte_offset(dir, 0);
pmd_clear(dir);
pte_free(pte);
}
static inline void free_one_pgd(pgd_t * dir)
{
int j;
pmd_t * pmd;
if (pgd_none(*dir))
return;
if (pgd_bad(*dir)) {
pgd_ERROR(*dir);
pgd_clear(dir);
return;
}
pmd = pmd_offset(dir, 0);
pgd_clear(dir);
for (j = 0; j < PTRS_PER_PMD ; j++)
free_one_pmd(pmd+j);
pmd_free(pmd);
}
/* Low and high watermarks for page table cache.
The system should try to have pgt_water[0] <= cache elements <= pgt_water[1]
*/
int pgt_cache_water[2] = { 25, 50 };
/* Returns the number of pages freed */
int check_pgt_cache(void)
{
return do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
}
/*
* This function clears all user-level page tables of a process - this
* is needed by execve(), so that old pages aren't in the way.
*/
void clear_page_tables(struct mm_struct *mm, unsigned long first, int nr)
{
pgd_t * page_dir = mm->pgd;
page_dir += first;
do {
free_one_pgd(page_dir);
page_dir++;
} while (--nr);
/* keep the page table cache within bounds */
check_pgt_cache();
}
#define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t))
#define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t))
/*
* copy one vm_area from one task to the other. Assumes the page tables
* already present in the new task to be cleared in the whole range
* covered by this vma.
*
* 08Jan98 Merged into one routine from several inline routines to reduce
* variable count and make things faster. -jj
*/
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma)
{
pgd_t * src_pgd, * dst_pgd;
unsigned long address = vma->vm_start;
unsigned long end = vma->vm_end;
unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
src_pgd = pgd_offset(src, address)-1;
dst_pgd = pgd_offset(dst, address)-1;
for (;;) {
pmd_t * src_pmd, * dst_pmd;
src_pgd++; dst_pgd++;
/* copy_pmd_range */
if (pgd_none(*src_pgd))
goto skip_copy_pmd_range;
if (pgd_bad(*src_pgd)) {
pgd_ERROR(*src_pgd);
pgd_clear(src_pgd);
skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;
if (!address || (address >= end))
goto out;
continue;
}
if (pgd_none(*dst_pgd)) {
if (!pmd_alloc(dst_pgd, 0))
goto nomem;
}
src_pmd = pmd_offset(src_pgd, address);
dst_pmd = pmd_offset(dst_pgd, address);
do {
pte_t * src_pte, * dst_pte;
/* copy_pte_range */
if (pmd_none(*src_pmd))
goto skip_copy_pte_range;
if (pmd_bad(*src_pmd)) {
pmd_ERROR(*src_pmd);
pmd_clear(src_pmd);
skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK;
if (address >= end)
goto out;
goto cont_copy_pmd_range;
}
if (pmd_none(*dst_pmd)) {
if (!pte_alloc(dst_pmd, 0))
goto nomem;
}
src_pte = pte_offset(src_pmd, address);
dst_pte = pte_offset(dst_pmd, address);
do {
pte_t pte = *src_pte;
unsigned long page_nr;
/* copy_one_pte */
if (pte_none(pte))
goto cont_copy_pte_range;
if (!pte_present(pte)) {
swap_duplicate(pte_to_swp_entry(pte));
set_pte(dst_pte, pte);
goto cont_copy_pte_range;
}
page_nr = pte_pagenr(pte);
if (page_nr >= max_mapnr ||
PageReserved(mem_map+page_nr)) {
set_pte(dst_pte, pte);
goto cont_copy_pte_range;
}
/* If it's a COW mapping, write protect it both in the parent and the child */
if (cow) {
pte = pte_wrprotect(pte);
set_pte(src_pte, pte);
}
/* If it's a shared mapping, mark it clean in the child */
if (vma->vm_flags & VM_SHARED)
pte = pte_mkclean(pte);
set_pte(dst_pte, pte_mkold(pte));
get_page(mem_map + page_nr);
cont_copy_pte_range: address += PAGE_SIZE;
if (address >= end)
goto out;
src_pte++;
dst_pte++;
} while ((unsigned long)src_pte & PTE_TABLE_MASK);
cont_copy_pmd_range: src_pmd++;
dst_pmd++;
} while ((unsigned long)src_pmd & PMD_TABLE_MASK);
}
out:
return 0;
nomem:
return -ENOMEM;
}
/*
* Return indicates whether a page was freed so caller can adjust rss
*/
static inline int free_pte(pte_t page)
{
if (pte_present(page)) {
unsigned long nr = pte_pagenr(page);
if (nr >= max_mapnr || PageReserved(mem_map+nr))
return 0;
/*
* free_page() used to be able to clear swap cache
* entries. We may now have to do it manually.
*/
free_page_and_swap_cache(mem_map+nr);
return 1;
}
swap_free(pte_to_swp_entry(page));
return 0;
}
static inline void forget_pte(pte_t page)
{
if (!pte_none(page)) {
printk("forget_pte: old mapping existed!\n");
free_pte(page);
}
}
static inline int zap_pte_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size)
{
pte_t * pte;
int freed;
if (pmd_none(*pmd))
return 0;
if (pmd_bad(*pmd)) {
pmd_ERROR(*pmd);
pmd_clear(pmd);
return 0;
}
pte = pte_offset(pmd, address);
address &= ~PMD_MASK;
if (address + size > PMD_SIZE)
size = PMD_SIZE - address;
size >>= PAGE_SHIFT;
freed = 0;
for (;;) {
pte_t page;
if (!size)
break;
page = *pte;
pte++;
size--;
pte_clear(pte-1);
if (pte_none(page))
continue;
freed += free_pte(page);
}
return freed;
}
static inline int zap_pmd_range(struct mm_struct *mm, pgd_t * dir, unsigned long address, unsigned long size)
{
pmd_t * pmd;
unsigned long end;
int freed;
if (pgd_none(*dir))
return 0;
if (pgd_bad(*dir)) {
pgd_ERROR(*dir);
pgd_clear(dir);
return 0;
}
pmd = pmd_offset(dir, address);
address &= ~PGDIR_MASK;
end = address + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
freed = 0;
do {
freed += zap_pte_range(mm, pmd, address, end - address);
address = (address + PMD_SIZE) & PMD_MASK;
pmd++;
} while (address < end);
return freed;
}
/*
* remove user pages in a given range.
*/
void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size)
{
pgd_t * dir;
unsigned long end = address + size;
int freed = 0;
dir = pgd_offset(mm, address);
/*
* This is a long-lived spinlock. That's fine.
* There's no contention, because the page table
* lock only protects against kswapd anyway, and
* even if kswapd happened to be looking at this
* process we _want_ it to get stuck.
*/
if (address >= end)
BUG();
spin_lock(&mm->page_table_lock);
do {
freed += zap_pmd_range(mm, dir, address, end - address);
address = (address + PGDIR_SIZE) & PGDIR_MASK;
dir++;
} while (address && (address < end));
spin_unlock(&mm->page_table_lock);
/*
* Update rss for the mm_struct (not necessarily current->mm)
*/
if (mm->rss > 0) {
mm->rss -= freed;
if (mm->rss < 0)
mm->rss = 0;
}
}
/*
* Do a quick page-table lookup for a single page.
*/
static struct page * follow_page(unsigned long address)
{
pgd_t *pgd;
pmd_t *pmd;
pgd = pgd_offset(current->mm, address);
pmd = pmd_offset(pgd, address);
if (pmd) {
pte_t * pte = pte_offset(pmd, address);
if (pte && pte_present(*pte))
return pte_page(*pte);
}
return NULL;
}
/*
* Given a physical address, is there a useful struct page pointing to
* it? This may become more complex in the future if we start dealing
* with IO-aperture pages in kiobufs.
*/
static inline struct page * get_page_map(struct page *page)
{
if (page > (mem_map + max_mapnr))
return 0;
return page;
}
/*
* Force in an entire range of pages from the current process's user VA,
* and pin them in physical memory.
*/
#define dprintk(x...)
int map_user_kiobuf(int rw, struct kiobuf *iobuf, unsigned long va, size_t len)
{
unsigned long ptr, end;
int err;
struct mm_struct * mm;
struct vm_area_struct * vma = 0;
struct page * map;
int i;
int datain = (rw == READ);
/* Make sure the iobuf is not already mapped somewhere. */
if (iobuf->nr_pages)
return -EINVAL;
mm = current->mm;
dprintk ("map_user_kiobuf: begin\n");
ptr = va & PAGE_MASK;
end = (va + len + PAGE_SIZE - 1) & PAGE_MASK;
err = expand_kiobuf(iobuf, (end - ptr) >> PAGE_SHIFT);
if (err)
return err;
down(&mm->mmap_sem);
err = -EFAULT;
iobuf->locked = 0;
iobuf->offset = va & ~PAGE_MASK;
iobuf->length = len;
i = 0;
/*
* First of all, try to fault in all of the necessary pages
*/
while (ptr < end) {
if (!vma || ptr >= vma->vm_end) {
vma = find_vma(current->mm, ptr);
if (!vma)
goto out_unlock;
if (vma->vm_start > ptr) {
if (!(vma->vm_flags & VM_GROWSDOWN))
goto out_unlock;
if (expand_stack(vma, ptr))
goto out_unlock;
}
if (((datain) && (!(vma->vm_flags & VM_WRITE))) ||
(!(vma->vm_flags & VM_READ))) {
err = -EACCES;
goto out_unlock;
}
}
if (handle_mm_fault(current->mm, vma, ptr, datain) <= 0)
goto out_unlock;
spin_lock(&mm->page_table_lock);
map = follow_page(ptr);
if (!map) {
spin_unlock(&mm->page_table_lock);
dprintk (KERN_ERR "Missing page in map_user_kiobuf\n");
goto out_unlock;
}
map = get_page_map(map);
if (map)
atomic_inc(&map->count);
else
printk (KERN_INFO "Mapped page missing [%d]\n", i);
spin_unlock(&mm->page_table_lock);
iobuf->maplist[i] = map;
iobuf->nr_pages = ++i;
ptr += PAGE_SIZE;
}
up(&mm->mmap_sem);
dprintk ("map_user_kiobuf: end OK\n");
return 0;
out_unlock:
up(&mm->mmap_sem);
unmap_kiobuf(iobuf);
dprintk ("map_user_kiobuf: end %d\n", err);
return err;
}
/*
* Unmap all of the pages referenced by a kiobuf. We release the pages,
* and unlock them if they were locked.
*/
void unmap_kiobuf (struct kiobuf *iobuf)
{
int i;
struct page *map;
for (i = 0; i < iobuf->nr_pages; i++) {
map = iobuf->maplist[i];
if (map) {
if (iobuf->locked)
UnlockPage(map);
__free_page(map);
}
}
iobuf->nr_pages = 0;
iobuf->locked = 0;
}
/*
* Lock down all of the pages of a kiovec for IO.
*
* If any page is mapped twice in the kiovec, we return the error -EINVAL.
*
* The optional wait parameter causes the lock call to block until all
* pages can be locked if set. If wait==0, the lock operation is
* aborted if any locked pages are found and -EAGAIN is returned.
*/
int lock_kiovec(int nr, struct kiobuf *iovec[], int wait)
{
struct kiobuf *iobuf;
int i, j;
struct page *page, **ppage;
int doublepage = 0;
int repeat = 0;
repeat:
for (i = 0; i < nr; i++) {
iobuf = iovec[i];
if (iobuf->locked)
continue;
iobuf->locked = 1;
ppage = iobuf->maplist;
for (j = 0; j < iobuf->nr_pages; ppage++, j++) {
page = *ppage;
if (!page)
continue;
if (TryLockPage(page))
goto retry;
}
}
return 0;
retry:
/*
* We couldn't lock one of the pages. Undo the locking so far,
* wait on the page we got to, and try again.
*/
unlock_kiovec(nr, iovec);
if (!wait)
return -EAGAIN;
/*
* Did the release also unlock the page we got stuck on?
*/
if (!PageLocked(page)) {
/*
* If so, we may well have the page mapped twice
* in the IO address range. Bad news. Of
* course, it _might_ just be a coincidence,
* but if it happens more than once, chances
* are we have a double-mapped page.
*/
if (++doublepage >= 3)
return -EINVAL;
/* Try again... */
wait_on_page(page);
}
if (++repeat < 16)
goto repeat;
return -EAGAIN;
}
/*
* Unlock all of the pages of a kiovec after IO.
*/
int unlock_kiovec(int nr, struct kiobuf *iovec[])
{
struct kiobuf *iobuf;
int i, j;
struct page *page, **ppage;
for (i = 0; i < nr; i++) {
iobuf = iovec[i];
if (!iobuf->locked)
continue;
iobuf->locked = 0;
ppage = iobuf->maplist;
for (j = 0; j < iobuf->nr_pages; ppage++, j++) {
page = *ppage;
if (!page)
continue;
UnlockPage(page);
}
}
return 0;
}
static inline void zeromap_pte_range(pte_t * pte, unsigned long address,
unsigned long size, pgprot_t prot)
{
unsigned long end;
address &= ~PMD_MASK;
end = address + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
pte_t oldpage = *pte;
set_pte(pte, zero_pte);
forget_pte(oldpage);
address += PAGE_SIZE;
pte++;
} while (address && (address < end));
}
static inline int zeromap_pmd_range(pmd_t * pmd, unsigned long address,
unsigned long size, pgprot_t prot)
{
unsigned long end;
address &= ~PGDIR_MASK;
end = address + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
do {
pte_t * pte = pte_alloc(pmd, address);
if (!pte)
return -ENOMEM;
zeromap_pte_range(pte, address, end - address, prot);
address = (address + PMD_SIZE) & PMD_MASK;
pmd++;
} while (address && (address < end));
return 0;
}
int zeromap_page_range(unsigned long address, unsigned long size, pgprot_t prot)
{
int error = 0;
pgd_t * dir;
unsigned long beg = address;
unsigned long end = address + size;
dir = pgd_offset(current->mm, address);
flush_cache_range(current->mm, beg, end);
if (address >= end)
BUG();
do {
pmd_t *pmd = pmd_alloc(dir, address);
error = -ENOMEM;
if (!pmd)
break;
error = zeromap_pmd_range(pmd, address, end - address, prot);
if (error)
break;
address = (address + PGDIR_SIZE) & PGDIR_MASK;
dir++;
} while (address && (address < end));
flush_tlb_range(current->mm, beg, end);
return error;
}
/*
* maps a range of physical memory into the requested pages. the old
* mappings are removed. any references to nonexistent pages results
* in null mappings (currently treated as "copy-on-access")
*/
static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
unsigned long phys_addr, pgprot_t prot)
{
unsigned long end;
address &= ~PMD_MASK;
end = address + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
unsigned long mapnr;
pte_t oldpage = *pte;
pte_clear(pte);
mapnr = MAP_NR(__va(phys_addr));
if (mapnr >= max_mapnr || PageReserved(mem_map+mapnr))
set_pte(pte, mk_pte_phys(phys_addr, prot));
forget_pte(oldpage);
address += PAGE_SIZE;
phys_addr += PAGE_SIZE;
pte++;
} while (address && (address < end));
}
static inline int remap_pmd_range(pmd_t * pmd, unsigned long address, unsigned long size,
unsigned long phys_addr, pgprot_t prot)
{
unsigned long end;
address &= ~PGDIR_MASK;
end = address + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
phys_addr -= address;
do {
pte_t * pte = pte_alloc(pmd, address);
if (!pte)
return -ENOMEM;
remap_pte_range(pte, address, end - address, address + phys_addr, prot);
address = (address + PMD_SIZE) & PMD_MASK;
pmd++;
} while (address && (address < end));
return 0;
}
int remap_page_range(unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
{
int error = 0;
pgd_t * dir;
unsigned long beg = from;
unsigned long end = from + size;
phys_addr -= from;
dir = pgd_offset(current->mm, from);
flush_cache_range(current->mm, beg, end);
if (from >= end)
BUG();
do {
pmd_t *pmd = pmd_alloc(dir, from);
error = -ENOMEM;
if (!pmd)
break;
error = remap_pmd_range(pmd, from, end - from, phys_addr + from, prot);
if (error)
break;
from = (from + PGDIR_SIZE) & PGDIR_MASK;
dir++;
} while (from && (from < end));
flush_tlb_range(current->mm, beg, end);
return error;
}
/*
* Establish a new mapping:
* - flush the old one
* - update the page tables
* - inform the TLB about the new one
*/
static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry)
{
flush_tlb_page(vma, address);
set_pte(page_table, entry);
update_mmu_cache(vma, address, entry);
}
static inline void break_cow(struct vm_area_struct * vma, struct page * old_page, struct page * new_page, unsigned long address,
pte_t *page_table)
{
copy_cow_page(old_page,new_page,address);
flush_page_to_ram(new_page);
flush_cache_page(vma, address);
establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot))));
}
/*
* This routine handles present pages, when users try to write
* to a shared page. It is done by copying the page to a new address
* and decrementing the shared-page counter for the old page.
*
* Goto-purists beware: the only reason for goto's here is that it results
* in better assembly code.. The "default" path will see no jumps at all.
*
* Note that this routine assumes that the protection checks have been
* done by the caller (the low-level page fault routine in most cases).
* Thus we can safely just mark it writable once we've done any necessary
* COW.
*
* We also mark the page dirty at this point even though the page will
* change only once the write actually happens. This avoids a few races,
* and potentially makes it more efficient.
*
* We enter with the page table read-lock held, and need to exit without
* it.
*/
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
unsigned long address, pte_t *page_table, pte_t pte)
{
unsigned long map_nr;
struct page *old_page, *new_page;
map_nr = pte_pagenr(pte);
if (map_nr >= max_mapnr)
goto bad_wp_page;
old_page = mem_map + map_nr;
/*
* We can avoid the copy if:
* - we're the only user (count == 1)
* - the only other user is the swap cache,
* and the only swap cache user is itself,
* in which case we can remove the page
* from the swap cache.
*/
switch (page_count(old_page)) {
case 2:
/*
* Lock the page so that no one can look it up from
* the swap cache, grab a reference and start using it.
* Can not do lock_page, holding page_table_lock.
*/
if (!PageSwapCache(old_page) || TryLockPage(old_page))
break;
if (is_page_shared(old_page)) {
UnlockPage(old_page);
break;
}
delete_from_swap_cache_nolock(old_page);
UnlockPage(old_page);
/* FallThrough */
case 1:
flush_cache_page(vma, address);
establish_pte(vma, address, page_table, pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));
spin_unlock(&mm->page_table_lock);
return 1; /* Minor fault */
}
/*
* Ok, we need to copy. Oh, well..
*/
spin_unlock(&mm->page_table_lock);
new_page = page_cache_alloc();
if (!new_page)
return -1;
spin_lock(&mm->page_table_lock);
/*
* Re-check the pte - we dropped the lock
*/
if (pte_val(*page_table) == pte_val(pte)) {
if (PageReserved(old_page))
++mm->rss;
break_cow(vma, old_page, new_page, address, page_table);
/* Free the old page.. */
new_page = old_page;
}
spin_unlock(&mm->page_table_lock);
page_cache_release(new_page);
return 1; /* Minor fault */
bad_wp_page:
spin_unlock(&mm->page_table_lock);
printk("do_wp_page: bogus page at address %08lx (nr %ld)\n",address,map_nr);
return -1;
}
/*
* This function zeroes out partial mmap'ed pages at truncation time..
*/
static void partial_clear(struct vm_area_struct *vma, unsigned long address)
{
unsigned int offset;
struct page *page;
pgd_t *page_dir;
pmd_t *page_middle;
pte_t *page_table, pte;
page_dir = pgd_offset(vma->vm_mm, address);
if (pgd_none(*page_dir))
return;
if (pgd_bad(*page_dir)) {
pgd_ERROR(*page_dir);
pgd_clear(page_dir);
return;
}
page_middle = pmd_offset(page_dir, address);
if (pmd_none(*page_middle))
return;
if (pmd_bad(*page_middle)) {
pmd_ERROR(*page_middle);
pmd_clear(page_middle);
return;
}
page_table = pte_offset(page_middle, address);
pte = *page_table;
if (!pte_present(pte))
return;
flush_cache_page(vma, address);
page = pte_page(pte);
if ((page-mem_map >= max_mapnr) || PageReserved(page))
return;
offset = address & ~PAGE_MASK;
memclear_highpage_flush(page, offset, PAGE_SIZE - offset);
}
/*
* Handle all mappings that got truncated by a "truncate()"
* system call.
*
* NOTE! We have to be ready to update the memory sharing
* between the file and the memory map for a potential last
* incomplete page. Ugly, but necessary.
*/
void vmtruncate(struct inode * inode, loff_t offset)
{
unsigned long partial, pgoff;
struct vm_area_struct * mpnt;
struct address_space *mapping = inode->i_mapping;
if (inode->i_size < offset)
goto out;
inode->i_size = offset;
truncate_inode_pages(mapping, offset);
spin_lock(&mapping->i_shared_lock);
if (!mapping->i_mmap)
goto out_unlock;
pgoff = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
partial = (unsigned long)offset & (PAGE_CACHE_SIZE - 1);
mpnt = mapping->i_mmap;
do {
struct mm_struct *mm = mpnt->vm_mm;
unsigned long start = mpnt->vm_start;
unsigned long end = mpnt->vm_end;
unsigned long len = end - start;
unsigned long diff;
/* mapping wholly truncated? */
if (mpnt->vm_pgoff >= pgoff) {
flush_cache_range(mm, start, end);
zap_page_range(mm, start, len);
flush_tlb_range(mm, start, end);
continue;
}
/* mapping wholly unaffected? */
len = len >> PAGE_SHIFT;
diff = pgoff - mpnt->vm_pgoff;
if (diff >= len)
continue;
/* Ok, partially affected.. */
start += diff << PAGE_SHIFT;
len = (len - diff) << PAGE_SHIFT;
if (start & ~PAGE_MASK) {
partial_clear(mpnt, start);
start = (start + ~PAGE_MASK) & PAGE_MASK;
}
flush_cache_range(mm, start, end);
zap_page_range(mm, start, len);
flush_tlb_range(mm, start, end);
} while ((mpnt = mpnt->vm_next_share) != NULL);
out_unlock:
spin_unlock(&mapping->i_shared_lock);
out:
/* this should go into ->truncate */
inode->i_size = offset;
if (inode->i_op && inode->i_op->truncate)
inode->i_op->truncate(inode);
}
/*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*/
void swapin_readahead(swp_entry_t entry)
{
int i, num;
struct page *new_page;
unsigned long offset;
/*
* Get the number of handles we should do readahead io to. Also,
* grab temporary references on them, releasing them as io completes.
*/
num = valid_swaphandles(entry, &offset);
for (i = 0; i < num; offset++, i++) {
/* Don't block on I/O for read-ahead */
if (atomic_read(&nr_async_pages) >= pager_daemon.swap_cluster) {
while (i++ < num)
swap_free(SWP_ENTRY(SWP_TYPE(entry), offset++));
break;
}
/* Ok, do the async read-ahead now */
new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry), offset), 0);
if (new_page != NULL)
page_cache_release(new_page);
swap_free(SWP_ENTRY(SWP_TYPE(entry), offset));
}
return;
}
static int do_swap_page(struct mm_struct * mm,
struct vm_area_struct * vma, unsigned long address,
pte_t * page_table, swp_entry_t entry, int write_access)
{
struct page *page = lookup_swap_cache(entry);
pte_t pte;
if (!page) {
lock_kernel();
swapin_readahead(entry);
page = read_swap_cache(entry);
unlock_kernel();
if (!page)
return -1;
flush_page_to_ram(page);
flush_icache_page(vma, page);
}
mm->rss++;
pte = mk_pte(page, vma->vm_page_prot);
/*
* Freeze the "shared"ness of the page, ie page_count + swap_count.
* Must lock page before transferring our swap count to already
* obtained page count.
*/
lock_page(page);
swap_free(entry);
if (write_access && !is_page_shared(page)) {
delete_from_swap_cache_nolock(page);
UnlockPage(page);
page = replace_with_highmem(page);
pte = mk_pte(page, vma->vm_page_prot);
pte = pte_mkwrite(pte_mkdirty(pte));
} else
UnlockPage(page);
set_pte(page_table, pte);
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, address, pte);
return 1; /* Minor fault */
}
/*
* This only needs the MM semaphore
*/
static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table, int write_access, unsigned long addr)
{
int high = 0;
struct page *page = NULL;
pte_t entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
if (write_access) {
page = alloc_page(GFP_HIGHUSER);
if (!page)
return -1;
if (PageHighMem(page))
high = 1;
clear_user_highpage(page, addr);
entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
mm->rss++;
flush_page_to_ram(page);
}
set_pte(page_table, entry);
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, addr, entry);
return 1; /* Minor fault */
}
/*
* do_no_page() tries to create a new page mapping. It aggressively
* tries to share with existing pages, but makes a separate copy if
* the "write_access" parameter is true in order to avoid the next
* page fault.
*
* As this is called only for pages that do not currently exist, we
* do not need to flush old virtual caches or the TLB.
*
* This is called with the MM semaphore held.
*/
static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,
unsigned long address, int write_access, pte_t *page_table)
{
struct page * new_page;
pte_t entry;
if (!vma->vm_ops || !vma->vm_ops->nopage)
return do_anonymous_page(mm, vma, page_table, write_access, address);
/*
* The third argument is "no_share", which tells the low-level code
* to copy, not share the page even if sharing is possible. It's
* essentially an early COW detection.
*/
new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, (vma->vm_flags & VM_SHARED)?0:write_access);
if (new_page == NULL) /* no page was available -- SIGBUS */
return 0;
if (new_page == NOPAGE_OOM)
return -1;
++mm->rss;
/*
* This silly early PAGE_DIRTY setting removes a race
* due to the bad i386 page protection. But it's valid
* for other architectures too.
*
* Note that if write_access is true, we either now have
* an exclusive copy of the page, or this is a shared mapping,
* so we can make it writable and dirty to avoid having to
* handle that later.
*/
flush_page_to_ram(new_page);
flush_icache_page(vma, new_page);
entry = mk_pte(new_page, vma->vm_page_prot);
if (write_access) {
entry = pte_mkwrite(pte_mkdirty(entry));
} else if (page_count(new_page) > 1 &&
!(vma->vm_flags & VM_SHARED))
entry = pte_wrprotect(entry);
set_pte(page_table, entry);
/* no need to invalidate: a not-present page shouldn't be cached */
update_mmu_cache(vma, address, entry);
return 2; /* Major fault */
}
/*
* These routines also need to handle stuff like marking pages dirty
* and/or accessed for architectures that don't do it in hardware (most
* RISC architectures). The early dirtying is also good on the i386.
*
* There is also a hook called "update_mmu_cache()" that architectures
* with external mmu caches can use to update those (ie the Sparc or
* PowerPC hashed page tables that act as extended TLBs).
*
* Note the "page_table_lock". It is to protect against kswapd removing
* pages from under us. Note that kswapd only ever _removes_ pages, never
* adds them. As such, once we have noticed that the page is not present,
* we can drop the lock early.
*
* The adding of pages is protected by the MM semaphore (which we hold),
* so we don't need to worry about a page being suddenly been added into
* our VM.
*/
static inline int handle_pte_fault(struct mm_struct *mm,
struct vm_area_struct * vma, unsigned long address,
int write_access, pte_t * pte)
{
pte_t entry;
entry = *pte;
if (!pte_present(entry)) {
if (pte_none(entry))
return do_no_page(mm, vma, address, write_access, pte);
return do_swap_page(mm, vma, address, pte, pte_to_swp_entry(entry), write_access);
}
/*
* Ok, the entry was present, we need to get the page table
* lock to synchronize with kswapd, and verify that the entry
* didn't change from under us..
*/
spin_lock(&mm->page_table_lock);
if (pte_val(entry) == pte_val(*pte)) {
if (write_access) {
if (!pte_write(entry))
return do_wp_page(mm, vma, address, pte, entry);
entry = pte_mkdirty(entry);
}
entry = pte_mkyoung(entry);
establish_pte(vma, address, pte, entry);
}
spin_unlock(&mm->page_table_lock);
return 1;
}
/*
* By the time we get here, we already hold the mm semaphore
*/
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
unsigned long address, int write_access)
{
int ret = -1;
pgd_t *pgd;
pmd_t *pmd;
pgd = pgd_offset(mm, address);
pmd = pmd_alloc(pgd, address);
if (pmd) {
pte_t * pte = pte_alloc(pmd, address);
if (pte)
ret = handle_pte_fault(mm, vma, address, write_access, pte);
}
return ret;
}
/*
* Simplistic page force-in..
*/
int make_pages_present(unsigned long addr, unsigned long end)
{
int write;
struct mm_struct *mm = current->mm;
struct vm_area_struct * vma;
vma = find_vma(mm, addr);
write = (vma->vm_flags & VM_WRITE) != 0;
if (addr >= end)
BUG();
do {
if (handle_mm_fault(mm, vma, addr, write) < 0)
return -1;
addr += PAGE_SIZE;
} while (addr < end);
return 0;
}
|