summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
blob: 6ad49c723159bcdc9913ae4ca65c21bbd66e9ad7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/*
 *  linux/mm/page_alloc.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/slab.h>

int nr_swap_pages;
int nr_active_pages;
int nr_inactive_dirty_pages;
pg_data_t *pgdat_list;

static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
static int zone_balance_ratio[MAX_NR_ZONES] = { 32, 128, 128, };
static int zone_balance_min[MAX_NR_ZONES] = { 10 , 10, 10, };
static int zone_balance_max[MAX_NR_ZONES] = { 255 , 255, 255, };

struct list_head active_list;
struct list_head inactive_dirty_list;
/*
 * Free_page() adds the page to the free lists. This is optimized for
 * fast normal cases (no error jumps taken normally).
 *
 * The way to optimize jumps for gcc-2.2.2 is to:
 *  - select the "normal" case and put it inside the if () { XXX }
 *  - no else-statements if you can avoid them
 *
 * With the above two rules, you get a straight-line execution path
 * for the normal case, giving better asm-code.
 */

#define memlist_init(x) INIT_LIST_HEAD(x)
#define memlist_add_head list_add
#define memlist_add_tail list_add_tail
#define memlist_del list_del
#define memlist_entry list_entry
#define memlist_next(x) ((x)->next)
#define memlist_prev(x) ((x)->prev)

/*
 * Temporary debugging check.
 */
#define BAD_RANGE(zone,x) (((zone) != (x)->zone) || (((x)-mem_map) < (zone)->offset) || (((x)-mem_map) >= (zone)->offset+(zone)->size))

/*
 * Buddy system. Hairy. You really aren't expected to understand this
 *
 * Hint: -mask = 1+~mask
 */

static void FASTCALL(__free_pages_ok (struct page *page, unsigned long order));
static void __free_pages_ok (struct page *page, unsigned long order)
{
	unsigned long index, page_idx, mask, flags;
	free_area_t *area;
	struct page *base;
	zone_t *zone;

	if (page->buffers)
		BUG();
	if (page->mapping)
		BUG();
	if (!VALID_PAGE(page))
		BUG();
	if (PageSwapCache(page))
		BUG();
	if (PageLocked(page))
		BUG();
	if (PageDecrAfter(page))
		BUG();
	if (PageActive(page))
		BUG();
	if (PageInactiveDirty(page))
		BUG();
	if (PageInactiveClean(page))
		BUG();

	page->flags &= ~((1<<PG_referenced) | (1<<PG_dirty));
	page->age = PAGE_AGE_START;
	
	zone = page->zone;

	mask = (~0UL) << order;
	base = mem_map + zone->offset;
	page_idx = page - base;
	if (page_idx & ~mask)
		BUG();
	index = page_idx >> (1 + order);

	area = zone->free_area + order;

	spin_lock_irqsave(&zone->lock, flags);

	zone->free_pages -= mask;

	while (mask + (1 << (MAX_ORDER-1))) {
		struct page *buddy1, *buddy2;

		if (area >= zone->free_area + MAX_ORDER)
			BUG();
		if (!test_and_change_bit(index, area->map))
			/*
			 * the buddy page is still allocated.
			 */
			break;
		/*
		 * Move the buddy up one level.
		 */
		buddy1 = base + (page_idx ^ -mask);
		buddy2 = base + page_idx;
		if (BAD_RANGE(zone,buddy1))
			BUG();
		if (BAD_RANGE(zone,buddy2))
			BUG();

		memlist_del(&buddy1->list);
		mask <<= 1;
		area++;
		index >>= 1;
		page_idx &= mask;
	}
	memlist_add_head(&(base + page_idx)->list, &area->free_list);

	spin_unlock_irqrestore(&zone->lock, flags);

	/*
	 * We don't want to protect this variable from race conditions
	 * since it's nothing important, but we do want to make sure
	 * it never gets negative.
	 */
	if (memory_pressure > NR_CPUS)
		memory_pressure--;
}

#define MARK_USED(index, order, area) \
	change_bit((index) >> (1+(order)), (area)->map)

static inline struct page * expand (zone_t *zone, struct page *page,
	 unsigned long index, int low, int high, free_area_t * area)
{
	unsigned long size = 1 << high;

	while (high > low) {
		if (BAD_RANGE(zone,page))
			BUG();
		area--;
		high--;
		size >>= 1;
		memlist_add_head(&(page)->list, &(area)->free_list);
		MARK_USED(index, high, area);
		index += size;
		page += size;
	}
	if (BAD_RANGE(zone,page))
		BUG();
	return page;
}

static FASTCALL(struct page * rmqueue(zone_t *zone, unsigned long order));
static struct page * rmqueue(zone_t *zone, unsigned long order)
{
	free_area_t * area = zone->free_area + order;
	unsigned long curr_order = order;
	struct list_head *head, *curr;
	unsigned long flags;
	struct page *page;

	spin_lock_irqsave(&zone->lock, flags);
	do {
		head = &area->free_list;
		curr = memlist_next(head);

		if (curr != head) {
			unsigned int index;

			page = memlist_entry(curr, struct page, list);
			if (BAD_RANGE(zone,page))
				BUG();
			memlist_del(curr);
			index = (page - mem_map) - zone->offset;
			MARK_USED(index, curr_order, area);
			zone->free_pages -= 1 << order;

			page = expand(zone, page, index, order, curr_order, area);
			spin_unlock_irqrestore(&zone->lock, flags);

			set_page_count(page, 1);
			if (BAD_RANGE(zone,page))
				BUG();
			DEBUG_ADD_PAGE
			return page;	
		}
		curr_order++;
		area++;
	} while (curr_order < MAX_ORDER);
	spin_unlock_irqrestore(&zone->lock, flags);

	return NULL;
}

#define PAGES_MIN	0
#define PAGES_LOW	1
#define PAGES_HIGH	2

/*
 * This function does the dirty work for __alloc_pages
 * and is separated out to keep the code size smaller.
 * (suggested by Davem at 1:30 AM, typed by Rik at 6 AM)
 */
static struct page * __alloc_pages_limit(zonelist_t *zonelist,
			unsigned long order, int limit, int direct_reclaim)
{
	zone_t **zone = zonelist->zones;

	for (;;) {
		zone_t *z = *(zone++);
		unsigned long water_mark;

		if (!z)
			break;
		if (!z->size)
			BUG();

		/*
		 * We allocate if the number of free + inactive_clean
		 * pages is above the watermark.
		 */
		switch (limit) {
			default:
			case PAGES_MIN:
				water_mark = z->pages_min;
				break;
			case PAGES_LOW:
				water_mark = z->pages_low;
				break;
			case PAGES_HIGH:
				water_mark = z->pages_high;
		}

		if (z->free_pages + z->inactive_clean_pages > water_mark) {
			struct page *page = NULL;
			/* If possible, reclaim a page directly. */
			if (direct_reclaim && z->free_pages < z->pages_min + 8)
				page = reclaim_page(z);
			/* If that fails, fall back to rmqueue. */
			if (!page)
				page = rmqueue(z, order);
			if (page)
				return page;
		}
	}

	/* Found nothing. */
	return NULL;
}


/*
 * This is the 'heart' of the zoned buddy allocator:
 */
struct page * __alloc_pages(zonelist_t *zonelist, unsigned long order)
{
	zone_t **zone;
	int direct_reclaim = 0;
	unsigned int gfp_mask = zonelist->gfp_mask;
	struct page * page;

	/*
	 * Allocations put pressure on the VM subsystem.
	 */
	memory_pressure++;

	/*
	 * (If anyone calls gfp from interrupts nonatomically then it
	 * will sooner or later tripped up by a schedule().)
	 *
	 * We are falling back to lower-level zones if allocation
	 * in a higher zone fails.
	 */

	/*
	 * Can we take pages directly from the inactive_clean
	 * list?
	 */
	if (order == 0 && (gfp_mask & __GFP_WAIT) &&
			!(current->flags & PF_MEMALLOC))
		direct_reclaim = 1;

	/*
	 * If we are about to get low on free pages and we also have
	 * an inactive page shortage, wake up kswapd.
	 */
	if (inactive_shortage() > inactive_target / 2 && free_shortage())
		wakeup_kswapd();
	/*
	 * If we are about to get low on free pages and cleaning
	 * the inactive_dirty pages would fix the situation,
	 * wake up bdflush.
	 */
	else if (free_shortage() && nr_inactive_dirty_pages > free_shortage()
			&& nr_inactive_dirty_pages >= freepages.high)
		wakeup_bdflush(0);

try_again:
	/*
	 * First, see if we have any zones with lots of free memory.
	 *
	 * We allocate free memory first because it doesn't contain
	 * any data ... DUH!
	 */
	zone = zonelist->zones;
	for (;;) {
		zone_t *z = *(zone++);
		if (!z)
			break;
		if (!z->size)
			BUG();

		if (z->free_pages >= z->pages_low) {
			page = rmqueue(z, order);
			if (page)
				return page;
		} else if (z->free_pages < z->pages_min &&
					waitqueue_active(&kreclaimd_wait)) {
				wake_up_interruptible(&kreclaimd_wait);
		}
	}

	/*
	 * Try to allocate a page from a zone with a HIGH
	 * amount of free + inactive_clean pages.
	 *
	 * If there is a lot of activity, inactive_target
	 * will be high and we'll have a good chance of
	 * finding a page using the HIGH limit.
	 */
	page = __alloc_pages_limit(zonelist, order, PAGES_HIGH, direct_reclaim);
	if (page)
		return page;

	/*
	 * Then try to allocate a page from a zone with more
	 * than zone->pages_low free + inactive_clean pages.
	 *
	 * When the working set is very large and VM activity
	 * is low, we're most likely to have our allocation
	 * succeed here.
	 */
	page = __alloc_pages_limit(zonelist, order, PAGES_LOW, direct_reclaim);
	if (page)
		return page;

	/*
	 * OK, none of the zones on our zonelist has lots
	 * of pages free.
	 *
	 * We wake up kswapd, in the hope that kswapd will
	 * resolve this situation before memory gets tight.
	 *
	 * We also yield the CPU, because that:
	 * - gives kswapd a chance to do something
	 * - slows down allocations, in particular the
	 *   allocations from the fast allocator that's
	 *   causing the problems ...
	 * - ... which minimises the impact the "bad guys"
	 *   have on the rest of the system
	 * - if we don't have __GFP_IO set, kswapd may be
	 *   able to free some memory we can't free ourselves
	 */
	wakeup_kswapd();
	if (gfp_mask & __GFP_WAIT) {
		__set_current_state(TASK_RUNNING);
		current->policy |= SCHED_YIELD;
		schedule();
	}

	/*
	 * After waking up kswapd, we try to allocate a page
	 * from any zone which isn't critical yet.
	 *
	 * Kswapd should, in most situations, bring the situation
	 * back to normal in no time.
	 */
	page = __alloc_pages_limit(zonelist, order, PAGES_MIN, direct_reclaim);
	if (page)
		return page;

	/*
	 * Damn, we didn't succeed.
	 *
	 * This can be due to 2 reasons:
	 * - we're doing a higher-order allocation
	 * 	--> move pages to the free list until we succeed
	 * - we're /really/ tight on memory
	 * 	--> try to free pages ourselves with page_launder
	 */
	if (!(current->flags & PF_MEMALLOC)) {
		/*
		 * Are we dealing with a higher order allocation?
		 *
		 * Move pages from the inactive_clean to the free list
		 * in the hope of creating a large, physically contiguous
		 * piece of free memory.
		 */
		if (order > 0 && (gfp_mask & __GFP_WAIT)) {
			zone = zonelist->zones;
			/* First, clean some dirty pages. */
			current->flags |= PF_MEMALLOC;
			page_launder(gfp_mask, 1);
			current->flags &= ~PF_MEMALLOC;
			for (;;) {
				zone_t *z = *(zone++);
				if (!z)
					break;
				if (!z->size)
					continue;
				while (z->inactive_clean_pages) {
					struct page * page;
					/* Move one page to the free list. */
					page = reclaim_page(z);
					if (!page)
						break;
					__free_page(page);
					/* Try if the allocation succeeds. */
					page = rmqueue(z, order);
					if (page)
						return page;
				}
			}
		}
		/*
		 * When we arrive here, we are really tight on memory.
		 *
		 * We try to free pages ourselves by:
		 * 	- shrinking the i/d caches.
		 * 	- reclaiming unused memory from the slab caches.
		 * 	- swapping/syncing pages to disk (done by page_launder)
		 * 	- moving clean pages from the inactive dirty list to
		 * 	  the inactive clean list. (done by page_launder)
		 */
		if (gfp_mask & __GFP_WAIT) {
			memory_pressure++;
			try_to_free_pages(gfp_mask);
			wakeup_bdflush(0);
			goto try_again;
		}
	}

	/*
	 * Final phase: allocate anything we can!
	 *
	 * Higher order allocations, GFP_ATOMIC allocations and
	 * recursive allocations (PF_MEMALLOC) end up here.
	 *
	 * Only recursive allocations can use the very last pages
	 * in the system, otherwise it would be just too easy to
	 * deadlock the system...
	 */
	zone = zonelist->zones;
	for (;;) {
		zone_t *z = *(zone++);
		struct page * page = NULL;
		if (!z)
			break;
		if (!z->size)
			BUG();

		/*
		 * SUBTLE: direct_reclaim is only possible if the task
		 * becomes PF_MEMALLOC while looping above. This will
		 * happen when the OOM killer selects this task for
		 * instant execution...
		 */
		if (direct_reclaim) {
			page = reclaim_page(z);
			if (page)
				return page;
		}

		/* XXX: is pages_min/4 a good amount to reserve for this? */
		if (z->free_pages < z->pages_min / 4 &&
				!(current->flags & PF_MEMALLOC))
			continue;
		page = rmqueue(z, order);
		if (page)
			return page;
	}

	/* No luck.. */
	printk(KERN_ERR "__alloc_pages: %lu-order allocation failed.\n", order);
	return NULL;
}

/*
 * Common helper functions.
 */
unsigned long __get_free_pages(int gfp_mask, unsigned long order)
{
	struct page * page;

	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}

unsigned long get_zeroed_page(int gfp_mask)
{
	struct page * page;

	page = alloc_pages(gfp_mask, 0);
	if (page) {
		void *address = page_address(page);
		clear_page(address);
		return (unsigned long) address;
	}
	return 0;
}

void __free_pages(struct page *page, unsigned long order)
{
	if (!PageReserved(page) && put_page_testzero(page))
		__free_pages_ok(page, order);
}

void free_pages(unsigned long addr, unsigned long order)
{
	if (addr != 0)
		__free_pages(virt_to_page(addr), order);
}

/*
 * Total amount of free (allocatable) RAM:
 */
unsigned int nr_free_pages (void)
{
	unsigned int sum;
	zone_t *zone;
	pg_data_t *pgdat = pgdat_list;

	sum = 0;
	while (pgdat) {
		for (zone = pgdat->node_zones; zone < pgdat->node_zones + MAX_NR_ZONES; zone++)
			sum += zone->free_pages;
		pgdat = pgdat->node_next;
	}
	return sum;
}

/*
 * Total amount of inactive_clean (allocatable) RAM:
 */
unsigned int nr_inactive_clean_pages (void)
{
	unsigned int sum;
	zone_t *zone;
	pg_data_t *pgdat = pgdat_list;

	sum = 0;
	while (pgdat) {
		for (zone = pgdat->node_zones; zone < pgdat->node_zones + MAX_NR_ZONES; zone++)
			sum += zone->inactive_clean_pages;
		pgdat = pgdat->node_next;
	}
	return sum;
}

/*
 * Amount of free RAM allocatable as buffer memory:
 */
unsigned int nr_free_buffer_pages (void)
{
	unsigned int sum;

	sum = nr_free_pages();
	sum += nr_inactive_clean_pages();
	sum += nr_inactive_dirty_pages;

	/*
	 * Keep our write behind queue filled, even if
	 * kswapd lags a bit right now.
	 */
	if (sum < freepages.high + inactive_target)
		sum = freepages.high + inactive_target;
	/*
	 * We don't want dirty page writebehind to put too
	 * much pressure on the working set, but we want it
	 * to be possible to have some dirty pages in the
	 * working set without upsetting the writebehind logic.
	 */
	sum += nr_active_pages >> 4;

	return sum;
}

#if CONFIG_HIGHMEM
unsigned int nr_free_highpages (void)
{
	pg_data_t *pgdat = pgdat_list;
	unsigned int pages = 0;

	while (pgdat) {
		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
		pgdat = pgdat->node_next;
	}
	return pages;
}
#endif

/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
 */
void show_free_areas_core(pg_data_t *pgdat)
{
 	unsigned long order;
	unsigned type;

	printk("Free pages:      %6dkB (%6dkB HighMem)\n",
		nr_free_pages() << (PAGE_SHIFT-10),
		nr_free_highpages() << (PAGE_SHIFT-10));

	printk("( Active: %d, inactive_dirty: %d, inactive_clean: %d, free: %d (%d %d %d) )\n",
		nr_active_pages,
		nr_inactive_dirty_pages,
		nr_inactive_clean_pages(),
		nr_free_pages(),
		freepages.min,
		freepages.low,
		freepages.high);

	for (type = 0; type < MAX_NR_ZONES; type++) {
		struct list_head *head, *curr;
		zone_t *zone = pgdat->node_zones + type;
 		unsigned long nr, total, flags;

		total = 0;
		if (zone->size) {
			spin_lock_irqsave(&zone->lock, flags);
		 	for (order = 0; order < MAX_ORDER; order++) {
				head = &(zone->free_area + order)->free_list;
				curr = head;
				nr = 0;
				for (;;) {
					curr = memlist_next(curr);
					if (curr == head)
						break;
					nr++;
				}
				total += nr * (1 << order);
				printk("%lu*%lukB ", nr,
						(PAGE_SIZE>>10) << order);
			}
			spin_unlock_irqrestore(&zone->lock, flags);
		}
		printk("= %lukB)\n", total * (PAGE_SIZE>>10));
	}

#ifdef SWAP_CACHE_INFO
	show_swap_cache_info();
#endif	
}

void show_free_areas(void)
{
	show_free_areas_core(pgdat_list);
}

/*
 * Builds allocation fallback zone lists.
 */
static inline void build_zonelists(pg_data_t *pgdat)
{
	int i, j, k;

	for (i = 0; i < NR_GFPINDEX; i++) {
		zonelist_t *zonelist;
		zone_t *zone;

		zonelist = pgdat->node_zonelists + i;
		memset(zonelist, 0, sizeof(*zonelist));

		zonelist->gfp_mask = i;
		j = 0;
		k = ZONE_NORMAL;
		if (i & __GFP_HIGHMEM)
			k = ZONE_HIGHMEM;
		if (i & __GFP_DMA)
			k = ZONE_DMA;

		switch (k) {
			default:
				BUG();
			/*
			 * fallthrough:
			 */
			case ZONE_HIGHMEM:
				zone = pgdat->node_zones + ZONE_HIGHMEM;
				if (zone->size) {
#ifndef CONFIG_HIGHMEM
					BUG();
#endif
					zonelist->zones[j++] = zone;
				}
			case ZONE_NORMAL:
				zone = pgdat->node_zones + ZONE_NORMAL;
				if (zone->size)
					zonelist->zones[j++] = zone;
			case ZONE_DMA:
				zone = pgdat->node_zones + ZONE_DMA;
				if (zone->size)
					zonelist->zones[j++] = zone;
		}
		zonelist->zones[j++] = NULL;
	} 
}

#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 */
void __init free_area_init_core(int nid, pg_data_t *pgdat, struct page **gmap,
	unsigned long *zones_size, unsigned long zone_start_paddr, 
	unsigned long *zholes_size, struct page *lmem_map)
{
	struct page *p;
	unsigned long i, j;
	unsigned long map_size;
	unsigned long totalpages, offset, realtotalpages;
	unsigned int cumulative = 0;

	totalpages = 0;
	for (i = 0; i < MAX_NR_ZONES; i++) {
		unsigned long size = zones_size[i];
		totalpages += size;
	}
	realtotalpages = totalpages;
	if (zholes_size)
		for (i = 0; i < MAX_NR_ZONES; i++)
			realtotalpages -= zholes_size[i];
			
	printk("On node %d totalpages: %lu\n", nid, realtotalpages);

	memlist_init(&active_list);
	memlist_init(&inactive_dirty_list);

	/*
	 * Some architectures (with lots of mem and discontinous memory
	 * maps) have to search for a good mem_map area:
	 * For discontigmem, the conceptual mem map array starts from 
	 * PAGE_OFFSET, we need to align the actual array onto a mem map 
	 * boundary, so that MAP_NR works.
	 */
	map_size = (totalpages + 1)*sizeof(struct page);
	if (lmem_map == (struct page *)0) {
		lmem_map = (struct page *) alloc_bootmem_node(pgdat, map_size);
		lmem_map = (struct page *)(PAGE_OFFSET + 
			MAP_ALIGN((unsigned long)lmem_map - PAGE_OFFSET));
	}
	*gmap = pgdat->node_mem_map = lmem_map;
	pgdat->node_size = totalpages;
	pgdat->node_start_paddr = zone_start_paddr;
	pgdat->node_start_mapnr = (lmem_map - mem_map);

	/*
	 * Initially all pages are reserved - free ones are freed
	 * up by free_all_bootmem() once the early boot process is
	 * done.
	 */
	for (p = lmem_map; p < lmem_map + totalpages; p++) {
		set_page_count(p, 0);
		SetPageReserved(p);
		init_waitqueue_head(&p->wait);
		memlist_init(&p->list);
	}

	offset = lmem_map - mem_map;	
	for (j = 0; j < MAX_NR_ZONES; j++) {
		zone_t *zone = pgdat->node_zones + j;
		unsigned long mask;
		unsigned long size, realsize;

		realsize = size = zones_size[j];
		if (zholes_size)
			realsize -= zholes_size[j];

		printk("zone(%lu): %lu pages.\n", j, size);
		zone->size = size;
		zone->name = zone_names[j];
		zone->lock = SPIN_LOCK_UNLOCKED;
		zone->zone_pgdat = pgdat;
		zone->free_pages = 0;
		zone->inactive_clean_pages = 0;
		zone->inactive_dirty_pages = 0;
		memlist_init(&zone->inactive_clean_list);
		if (!size)
			continue;

		zone->offset = offset;
		cumulative += size;
		mask = (realsize / zone_balance_ratio[j]);
		if (mask < zone_balance_min[j])
			mask = zone_balance_min[j];
		else if (mask > zone_balance_max[j])
			mask = zone_balance_max[j];
		zone->pages_min = mask;
		zone->pages_low = mask*2;
		zone->pages_high = mask*3;
		/*
		 * Add these free targets to the global free target;
		 * we have to be SURE that freepages.high is higher
		 * than SUM [zone->pages_min] for all zones, otherwise
		 * we may have bad bad problems.
		 *
		 * This means we cannot make the freepages array writable
		 * in /proc, but have to add a separate extra_free_target
		 * for people who require it to catch load spikes in eg.
		 * gigabit ethernet routing...
		 */
		freepages.min += mask;
		freepages.low += mask*2;
		freepages.high += mask*3;
		zone->zone_mem_map = mem_map + offset;
		zone->zone_start_mapnr = offset;
		zone->zone_start_paddr = zone_start_paddr;

		for (i = 0; i < size; i++) {
			struct page *page = mem_map + offset + i;
			page->zone = zone;
			if (j != ZONE_HIGHMEM) {
				page->virtual = __va(zone_start_paddr);
				zone_start_paddr += PAGE_SIZE;
			}
		}

		offset += size;
		mask = -1;
		for (i = 0; i < MAX_ORDER; i++) {
			unsigned long bitmap_size;

			memlist_init(&zone->free_area[i].free_list);
			mask += mask;
			size = (size + ~mask) & mask;
			bitmap_size = size >> i;
			bitmap_size = (bitmap_size + 7) >> 3;
			bitmap_size = LONG_ALIGN(bitmap_size);
			zone->free_area[i].map = 
			  (unsigned int *) alloc_bootmem_node(pgdat, bitmap_size);
		}
	}
	build_zonelists(pgdat);
}

void __init free_area_init(unsigned long *zones_size)
{
	free_area_init_core(0, &contig_page_data, &mem_map, zones_size, 0, 0, 0);
}

static int __init setup_mem_frac(char *str)
{
	int j = 0;

	while (get_option(&str, &zone_balance_ratio[j++]) == 2);
	printk("setup_mem_frac: ");
	for (j = 0; j < MAX_NR_ZONES; j++) printk("%d  ", zone_balance_ratio[j]);
	printk("\n");
	return 1;
}

__setup("memfrac=", setup_mem_frac);