summaryrefslogtreecommitdiffstats
path: root/mm/vmscan.c
blob: aacd9a5b033de4ce46b292fd99be60f2e3349c8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Version: $Id: vmscan.c,v 1.5 1998/02/23 22:14:28 sct Exp $
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/smp_lock.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/file.h>

#include <asm/pgalloc.h>

/*
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * have died while we slept).
 */
static int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int gfp_mask)
{
	pte_t pte;
	swp_entry_t entry;
	struct page * page;
	int (*swapout)(struct page *, struct file *);
	int onlist;

	pte = *page_table;
	if (!pte_present(pte))
		goto out_failed;
	page = pte_page(pte);
	if ((!VALID_PAGE(page)) || PageReserved(page))
		goto out_failed;

	if (mm->swap_cnt)
		mm->swap_cnt--;

	onlist = PageActive(page);
	/* Don't look at this pte if it's been accessed recently. */
	if (pte_young(pte)) {
		set_pte(page_table, pte_mkold(pte));
		if (onlist) {
			/*
			 * Transfer the "accessed" bit from the page
			 * tables to the global page map. Page aging
			 * will be done by refill_inactive_scan().
			 */
                	SetPageReferenced(page);
		} else {
			/*
			 * The page is not on the active list, so
			 * we have to do the page aging ourselves.
			 */
			age_page_up(page);
		}
		goto out_failed;
	}
	if (!onlist)
		/* The page is still mapped, so it can't be freeable... */
		age_page_down_ageonly(page);

	/*
	 * If the page is in active use by us, or if the page
	 * is in active use by others, don't unmap it or
	 * (worse) start unneeded IO.
	 */
	if (page->age > 0)
		goto out_failed;

	if (TryLockPage(page))
		goto out_failed;

	/*
	 * Is the page already in the swap cache? If so, then
	 * we can just drop our reference to it without doing
	 * any IO - it's already up-to-date on disk.
	 *
	 * Return 0, as we didn't actually free any real
	 * memory, and we should just continue our scan.
	 */
	if (PageSwapCache(page)) {
		entry.val = page->index;
		swap_duplicate(entry);
		set_pte(page_table, swp_entry_to_pte(entry));
drop_pte:
		UnlockPage(page);
		mm->rss--;
		flush_tlb_page(vma, address);
		deactivate_page(page);
		page_cache_release(page);
		goto out_failed;
	}

	/*
	 * Is it a clean page? Then it must be recoverable
	 * by just paging it in again, and we can just drop
	 * it..
	 *
	 * However, this won't actually free any real
	 * memory, as the page will just be in the page cache
	 * somewhere, and as such we should just continue
	 * our scan.
	 *
	 * Basically, this just makes it possible for us to do
	 * some real work in the future in "refill_inactive()".
	 */
	if (!pte_dirty(pte)) {
		flush_cache_page(vma, address);
		pte_clear(page_table);
		goto drop_pte;
	}

	/*
	 * Don't go down into the swap-out stuff if
	 * we cannot do I/O! Avoid recursing on FS
	 * locks etc.
	 */
	if (!(gfp_mask & __GFP_IO))
		goto out_unlock;

	/*
	 * Don't do any of the expensive stuff if
	 * we're not really interested in this zone.
	 */
	if (page->zone->free_pages + page->zone->inactive_clean_pages
					+ page->zone->inactive_dirty_pages
		      	> page->zone->pages_high + inactive_target)
		goto out_unlock;

	/*
	 * Ok, it's really dirty. That means that
	 * we should either create a new swap cache
	 * entry for it, or we should write it back
	 * to its own backing store.
	 *
	 * Note that in neither case do we actually
	 * know that we make a page available, but
	 * as we potentially sleep we can no longer
	 * continue scanning, so we migth as well
	 * assume we free'd something.
	 *
	 * NOTE NOTE NOTE! This should just set a
	 * dirty bit in 'page', and just drop the
	 * pte. All the hard work would be done by
	 * refill_inactive().
	 *
	 * That would get rid of a lot of problems.
	 */
	flush_cache_page(vma, address);
	if (vma->vm_ops && (swapout = vma->vm_ops->swapout)) {
		int error;
		struct file *file = vma->vm_file;
		if (file) get_file(file);
		pte_clear(page_table);
		mm->rss--;
		flush_tlb_page(vma, address);
		vmlist_access_unlock(mm);
		error = swapout(page, file);
		UnlockPage(page);
		if (file) fput(file);
		if (!error)
			goto out_free_success;
		deactivate_page(page);
		page_cache_release(page);
		return error;
	}

	/*
	 * This is a dirty, swappable page.  First of all,
	 * get a suitable swap entry for it, and make sure
	 * we have the swap cache set up to associate the
	 * page with that swap entry.
	 */
	entry = get_swap_page();
	if (!entry.val)
		goto out_unlock; /* No swap space left */

	if (!(page = prepare_highmem_swapout(page)))
		goto out_swap_free;

	swap_duplicate(entry);	/* One for the process, one for the swap cache */

	/* Add it to the swap cache */
	add_to_swap_cache(page, entry);

	/* Put the swap entry into the pte after the page is in swapcache */
	mm->rss--;
	set_pte(page_table, swp_entry_to_pte(entry));
	flush_tlb_page(vma, address);
	vmlist_access_unlock(mm);

	/* OK, do a physical asynchronous write to swap.  */
	rw_swap_page(WRITE, page, 0);
	deactivate_page(page);

out_free_success:
	page_cache_release(page);
	return 1;
out_swap_free:
	swap_free(entry);
out_failed:
	return 0;
out_unlock:
	UnlockPage(page);
	return 0;
}

/*
 * A new implementation of swap_out().  We do not swap complete processes,
 * but only a small number of blocks, before we continue with the next
 * process.  The number of blocks actually swapped is determined on the
 * number of page faults, that this process actually had in the last time,
 * so we won't swap heavily used processes all the time ...
 *
 * Note: the priority argument is a hint on much CPU to waste with the
 *       swap block search, not a hint, of how much blocks to swap with
 *       each process.
 *
 * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de
 */

static inline int swap_out_pmd(struct mm_struct * mm, struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{
	pte_t * pte;
	unsigned long pmd_end;

	if (pmd_none(*dir))
		return 0;
	if (pmd_bad(*dir)) {
		pmd_ERROR(*dir);
		pmd_clear(dir);
		return 0;
	}
	
	pte = pte_offset(dir, address);
	
	pmd_end = (address + PMD_SIZE) & PMD_MASK;
	if (end > pmd_end)
		end = pmd_end;

	do {
		int result;
		mm->swap_address = address + PAGE_SIZE;
		result = try_to_swap_out(mm, vma, address, pte, gfp_mask);
		if (result)
			return result;
		if (!mm->swap_cnt)
			return 0;
		address += PAGE_SIZE;
		pte++;
	} while (address && (address < end));
	return 0;
}

static inline int swap_out_pgd(struct mm_struct * mm, struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{
	pmd_t * pmd;
	unsigned long pgd_end;

	if (pgd_none(*dir))
		return 0;
	if (pgd_bad(*dir)) {
		pgd_ERROR(*dir);
		pgd_clear(dir);
		return 0;
	}

	pmd = pmd_offset(dir, address);

	pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;	
	if (pgd_end && (end > pgd_end))
		end = pgd_end;
	
	do {
		int result = swap_out_pmd(mm, vma, pmd, address, end, gfp_mask);
		if (result)
			return result;
		if (!mm->swap_cnt)
			return 0;
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address && (address < end));
	return 0;
}

static int swap_out_vma(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, int gfp_mask)
{
	pgd_t *pgdir;
	unsigned long end;

	/* Don't swap out areas which are locked down */
	if (vma->vm_flags & VM_LOCKED)
		return 0;

	pgdir = pgd_offset(mm, address);

	end = vma->vm_end;
	if (address >= end)
		BUG();
	do {
		int result = swap_out_pgd(mm, vma, pgdir, address, end, gfp_mask);
		if (result)
			return result;
		if (!mm->swap_cnt)
			return 0;
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		pgdir++;
	} while (address && (address < end));
	return 0;
}

static int swap_out_mm(struct mm_struct * mm, int gfp_mask)
{
	unsigned long address;
	struct vm_area_struct* vma;

	/*
	 * Go through process' page directory.
	 */
	address = mm->swap_address;

	/*
	 * Find the proper vm-area after freezing the vma chain 
	 * and ptes.
	 */
	vmlist_access_lock(mm);
	vma = find_vma(mm, address);
	if (vma) {
		if (address < vma->vm_start)
			address = vma->vm_start;

		for (;;) {
			int result = swap_out_vma(mm, vma, address, gfp_mask);
			if (result)
				return result;
			if (!mm->swap_cnt)
				goto out_unlock;
			vma = vma->vm_next;
			if (!vma)
				break;
			address = vma->vm_start;
		}
	}
	/* Reset to 0 when we reach the end of address space */
	mm->swap_address = 0;
	mm->swap_cnt = 0;

out_unlock:
	vmlist_access_unlock(mm);

	/* We didn't find anything for the process */
	return 0;
}

/*
 * Select the task with maximal swap_cnt and try to swap out a page.
 * N.B. This function returns only 0 or 1.  Return values != 1 from
 * the lower level routines result in continued processing.
 */
#define SWAP_SHIFT 5
#define SWAP_MIN 8

static int swap_out(unsigned int priority, int gfp_mask, unsigned long idle_time)
{
	struct task_struct * p;
	int counter;
	int __ret = 0;

	lock_kernel();
	/* 
	 * We make one or two passes through the task list, indexed by 
	 * assign = {0, 1}:
	 *   Pass 1: select the swappable task with maximal RSS that has
	 *         not yet been swapped out. 
	 *   Pass 2: re-assign rss swap_cnt values, then select as above.
	 *
	 * With this approach, there's no need to remember the last task
	 * swapped out.  If the swap-out fails, we clear swap_cnt so the 
	 * task won't be selected again until all others have been tried.
	 *
	 * Think of swap_cnt as a "shadow rss" - it tells us which process
	 * we want to page out (always try largest first).
	 */
	counter = (nr_threads << SWAP_SHIFT) >> priority;
	if (counter < 1)
		counter = 1;

	for (; counter >= 0; counter--) {
		unsigned long max_cnt = 0;
		struct mm_struct *best = NULL;
		int pid = 0;
		int assign = 0;
		int found_task = 0;
	select:
		read_lock(&tasklist_lock);
		p = init_task.next_task;
		for (; p != &init_task; p = p->next_task) {
			struct mm_struct *mm = p->mm;
			if (!p->swappable || !mm)
				continue;
	 		if (mm->rss <= 0)
				continue;
			/* Skip tasks which haven't slept long enough yet when idle-swapping. */
			if (idle_time && !assign && (!(p->state & TASK_INTERRUPTIBLE) ||
					time_after(p->sleep_time + idle_time * HZ, jiffies)))
				continue;
			found_task++;
			/* Refresh swap_cnt? */
			if (assign == 1) {
				mm->swap_cnt = (mm->rss >> SWAP_SHIFT);
				if (mm->swap_cnt < SWAP_MIN)
					mm->swap_cnt = SWAP_MIN;
			}
			if (mm->swap_cnt > max_cnt) {
				max_cnt = mm->swap_cnt;
				best = mm;
				pid = p->pid;
			}
		}
		read_unlock(&tasklist_lock);
		if (!best) {
			if (!assign && found_task > 0) {
				assign = 1;
				goto select;
			}
			goto out;
		} else {
			int ret;

			atomic_inc(&best->mm_count);
			ret = swap_out_mm(best, gfp_mask);
			mmdrop(best);

			if (!ret)
				continue;

			if (ret < 0)
				kill_proc(pid, SIGBUS, 1);
			__ret = 1;
			goto out;
		}
	}
out:
	unlock_kernel();
	return __ret;
}


/**
 * reclaim_page -	reclaims one page from the inactive_clean list
 * @zone: reclaim a page from this zone
 *
 * The pages on the inactive_clean can be instantly reclaimed.
 * The tests look impressive, but most of the time we'll grab
 * the first page of the list and exit successfully.
 */
struct page * reclaim_page(zone_t * zone)
{
	struct page * page = NULL;
	struct list_head * page_lru;
	int maxscan;

	/*
	 * We only need the pagemap_lru_lock if we don't reclaim the page,
	 * but we have to grab the pagecache_lock before the pagemap_lru_lock
	 * to avoid deadlocks and most of the time we'll succeed anyway.
	 */
	spin_lock(&pagecache_lock);
	spin_lock(&pagemap_lru_lock);
	maxscan = zone->inactive_clean_pages;
	while ((page_lru = zone->inactive_clean_list.prev) !=
			&zone->inactive_clean_list && maxscan--) {
		page = list_entry(page_lru, struct page, lru);

		/* Wrong page on list?! (list corruption, should not happen) */
		if (!PageInactiveClean(page)) {
			printk("VM: reclaim_page, wrong page on list.\n");
			list_del(page_lru);
			page->zone->inactive_clean_pages--;
			continue;
		}

		/* Page is or was in use?  Move it to the active list. */
		if (PageTestandClearReferenced(page) || page->age > 0 ||
				(!page->buffers && page_count(page) > 1)) {
			del_page_from_inactive_clean_list(page);
			add_page_to_active_list(page);
			continue;
		}

		/* The page is dirty, or locked, move to inactive_diry list. */
		if (page->buffers || TryLockPage(page)) {
			del_page_from_inactive_clean_list(page);
			add_page_to_inactive_dirty_list(page);
			continue;
		}

		/* OK, remove the page from the caches. */
                if (PageSwapCache(page)) {
			__delete_from_swap_cache(page);
			goto found_page;
		}

		if (page->mapping) {
			__remove_inode_page(page);
			goto found_page;
		}

		/* We should never ever get here. */
		printk(KERN_ERR "VM: reclaim_page, found unknown page\n");
		list_del(page_lru);
		zone->inactive_clean_pages--;
		UnlockPage(page);
	}
	/* Reset page pointer, maybe we encountered an unfreeable page. */
	page = NULL;
	goto out;

found_page:
	del_page_from_inactive_clean_list(page);
	UnlockPage(page);
	page->age = PAGE_AGE_START;
	if (page_count(page) != 1)
		printk("VM: reclaim_page, found page with count %d!\n",
				page_count(page));
out:
	spin_unlock(&pagemap_lru_lock);
	spin_unlock(&pagecache_lock);
	memory_pressure++;
	return page;
}

/**
 * page_launder - clean dirty inactive pages, move to inactive_clean list
 * @gfp_mask: what operations we are allowed to do
 * @sync: should we wait synchronously for the cleaning of pages
 *
 * When this function is called, we are most likely low on free +
 * inactive_clean pages. Since we want to refill those pages as
 * soon as possible, we'll make two loops over the inactive list,
 * one to move the already cleaned pages to the inactive_clean lists
 * and one to (often asynchronously) clean the dirty inactive pages.
 *
 * In situations where kswapd cannot keep up, user processes will
 * end up calling this function. Since the user process needs to
 * have a page before it can continue with its allocation, we'll
 * do synchronous page flushing in that case.
 *
 * This code is heavily inspired by the FreeBSD source code. Thanks
 * go out to Matthew Dillon.
 */
#define MAX_LAUNDER 		(4 * (1 << page_cluster))
int page_launder(int gfp_mask, int sync)
{
	int launder_loop, maxscan, cleaned_pages, maxlaunder;
	int can_get_io_locks;
	struct list_head * page_lru;
	struct page * page;

	/*
	 * We can only grab the IO locks (eg. for flushing dirty
	 * buffers to disk) if __GFP_IO is set.
	 */
	can_get_io_locks = gfp_mask & __GFP_IO;

	launder_loop = 0;
	maxlaunder = 0;
	cleaned_pages = 0;

dirty_page_rescan:
	spin_lock(&pagemap_lru_lock);
	maxscan = nr_inactive_dirty_pages;
	while ((page_lru = inactive_dirty_list.prev) != &inactive_dirty_list &&
				maxscan-- > 0) {
		page = list_entry(page_lru, struct page, lru);

		/* Wrong page on list?! (list corruption, should not happen) */
		if (!PageInactiveDirty(page)) {
			printk("VM: page_launder, wrong page on list.\n");
			list_del(page_lru);
			nr_inactive_dirty_pages--;
			page->zone->inactive_dirty_pages--;
			continue;
		}

		/* Page is or was in use?  Move it to the active list. */
		if (PageTestandClearReferenced(page) || page->age > 0 ||
				(!page->buffers && page_count(page) > 1) ||
				page_ramdisk(page)) {
			del_page_from_inactive_dirty_list(page);
			add_page_to_active_list(page);
			continue;
		}

		/*
		 * The page is locked. IO in progress?
		 * Move it to the back of the list.
		 */
		if (TryLockPage(page)) {
			list_del(page_lru);
			list_add(page_lru, &inactive_dirty_list);
			continue;
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we either free
		 * the page (in case it was a buffercache only page) or we
		 * move the page to the inactive_clean list.
		 *
		 * On the first round, we should free all previously cleaned
		 * buffer pages
		 */
		if (page->buffers) {
			int wait, clearedbuf;
			int freed_page = 0;
			/*
			 * Since we might be doing disk IO, we have to
			 * drop the spinlock and take an extra reference
			 * on the page so it doesn't go away from under us.
			 */
			del_page_from_inactive_dirty_list(page);
			page_cache_get(page);
			spin_unlock(&pagemap_lru_lock);

			/* Will we do (asynchronous) IO? */
			if (launder_loop && maxlaunder == 0 && sync)
				wait = 2;	/* Synchrounous IO */
			else if (launder_loop && maxlaunder-- > 0)
				wait = 1;	/* Async IO */
			else
				wait = 0;	/* No IO */

			/* Try to free the page buffers. */
			clearedbuf = try_to_free_buffers(page, wait);

			/*
			 * Re-take the spinlock. Note that we cannot
			 * unlock the page yet since we're still
			 * accessing the page_struct here...
			 */
			spin_lock(&pagemap_lru_lock);

			/* The buffers were not freed. */
			if (!clearedbuf) {
				add_page_to_inactive_dirty_list(page);

			/* The page was only in the buffer cache. */
			} else if (!page->mapping) {
				atomic_dec(&buffermem_pages);
				freed_page = 1;
				cleaned_pages++;

			/* The page has more users besides the cache and us. */
			} else if (page_count(page) > 2) {
				add_page_to_active_list(page);

			/* OK, we "created" a freeable page. */
			} else /* page->mapping && page_count(page) == 2 */ {
				add_page_to_inactive_clean_list(page);
				cleaned_pages++;
			}

			/*
			 * Unlock the page and drop the extra reference.
			 * We can only do it here because we ar accessing
			 * the page struct above.
			 */
			UnlockPage(page);
			page_cache_release(page);

			/* 
			 * If we're freeing buffer cache pages, stop when
			 * we've got enough free memory.
			 */
			if (freed_page && !free_shortage())
				break;
			continue;
		} else if (page->mapping && !PageDirty(page)) {
			/*
			 * If a page had an extra reference in
			 * deactivate_page(), we will find it here.
			 * Now the page is really freeable, so we
			 * move it to the inactive_clean list.
			 */
			del_page_from_inactive_dirty_list(page);
			add_page_to_inactive_clean_list(page);
			UnlockPage(page);
			cleaned_pages++;
		} else {
			/*
			 * OK, we don't know what to do with the page.
			 * It's no use keeping it here, so we move it to
			 * the active list.
			 */
			del_page_from_inactive_dirty_list(page);
			add_page_to_active_list(page);
			UnlockPage(page);
		}
	}
	spin_unlock(&pagemap_lru_lock);

	/*
	 * If we don't have enough free pages, we loop back once
	 * to queue the dirty pages for writeout. When we were called
	 * by a user process (that /needs/ a free page) and we didn't
	 * free anything yet, we wait synchronously on the writeout of
	 * MAX_SYNC_LAUNDER pages.
	 *
	 * We also wake up bdflush, since bdflush should, under most
	 * loads, flush out the dirty pages before we have to wait on
	 * IO.
	 */
	if (can_get_io_locks && !launder_loop && free_shortage()) {
		launder_loop = 1;
		/* If we cleaned pages, never do synchronous IO. */
		if (cleaned_pages)
			sync = 0;
		/* We only do a few "out of order" flushes. */
		maxlaunder = MAX_LAUNDER;
		/* Kflushd takes care of the rest. */
		wakeup_bdflush(0);
		goto dirty_page_rescan;
	}

	/* Return the number of pages moved to the inactive_clean list. */
	return cleaned_pages;
}

/**
 * refill_inactive_scan - scan the active list and find pages to deactivate
 * @priority: the priority at which to scan
 * @oneshot: exit after deactivating one page
 *
 * This function will scan a portion of the active list to find
 * unused pages, those pages will then be moved to the inactive list.
 */
int refill_inactive_scan(unsigned int priority, int oneshot)
{
	struct list_head * page_lru;
	struct page * page;
	int maxscan, page_active = 0;
	int ret = 0;

	/* Take the lock while messing with the list... */
	spin_lock(&pagemap_lru_lock);
	maxscan = nr_active_pages >> priority;
	while (maxscan-- > 0 && (page_lru = active_list.prev) != &active_list) {
		page = list_entry(page_lru, struct page, lru);

		/* Wrong page on list?! (list corruption, should not happen) */
		if (!PageActive(page)) {
			printk("VM: refill_inactive, wrong page on list.\n");
			list_del(page_lru);
			nr_active_pages--;
			continue;
		}

		/* Do aging on the pages. */
		if (PageTestandClearReferenced(page)) {
			age_page_up_nolock(page);
			page_active = 1;
		} else {
			age_page_down_ageonly(page);
			/*
			 * Since we don't hold a reference on the page
			 * ourselves, we have to do our test a bit more
			 * strict then deactivate_page(). This is needed
			 * since otherwise the system could hang shuffling
			 * unfreeable pages from the active list to the
			 * inactive_dirty list and back again...
			 *
			 * SUBTLE: we can have buffer pages with count 1.
			 */
			if (page_count(page) <= (page->buffers ? 2 : 1)) {
				deactivate_page_nolock(page);
				page_active = 0;
			} else {
				page_active = 1;
			}
		}
		/*
		 * If the page is still on the active list, move it
		 * to the other end of the list. Otherwise it was
		 * deactivated by age_page_down and we exit successfully.
		 */
		if (page_active || PageActive(page)) {
			list_del(page_lru);
			list_add(page_lru, &active_list);
		} else {
			ret = 1;
			if (oneshot)
				break;
		}
	}
	spin_unlock(&pagemap_lru_lock);

	return ret;
}

/*
 * Check if there are zones with a severe shortage of free pages,
 * or if all zones have a minor shortage.
 */
int free_shortage(void)
{
	pg_data_t *pgdat = pgdat_list;
	int sum = 0;
	int freeable = nr_free_pages() + nr_inactive_clean_pages();
	int freetarget = freepages.high + inactive_target / 3;

	/* Are we low on free pages globally? */
	if (freeable < freetarget)
		return freetarget - freeable;

	/* If not, are we very low on any particular zone? */
	do {
		int i;
		for(i = 0; i < MAX_NR_ZONES; i++) {
			zone_t *zone = pgdat->node_zones+ i;
			if (zone->size && (zone->inactive_clean_pages +
					zone->free_pages < zone->pages_min)) {
				sum += zone->pages_min;
				sum -= zone->free_pages;
				sum -= zone->inactive_clean_pages;
			}
		}
		pgdat = pgdat->node_next;
	} while (pgdat);

	return sum;
}

/*
 * How many inactive pages are we short?
 */
int inactive_shortage(void)
{
	int shortage = 0;

	shortage += freepages.high;
	shortage += inactive_target;
	shortage -= nr_free_pages();
	shortage -= nr_inactive_clean_pages();
	shortage -= nr_inactive_dirty_pages;

	if (shortage > 0)
		return shortage;

	return 0;
}

/*
 * We need to make the locks finer granularity, but right
 * now we need this so that we can do page allocations
 * without holding the kernel lock etc.
 *
 * We want to try to free "count" pages, and we want to 
 * cluster them so that we get good swap-out behaviour.
 *
 * OTOH, if we're a user process (and not kswapd), we
 * really care about latency. In that case we don't try
 * to free too many pages.
 */
static int refill_inactive(unsigned int gfp_mask, int user)
{
	int priority, count, start_count, made_progress;
	unsigned long idle_time;

	count = inactive_shortage() + free_shortage();
	if (user)
		count = (1 << page_cluster);
	start_count = count;

	/* Always trim SLAB caches when memory gets low. */
	kmem_cache_reap(gfp_mask);

	/*
	 * Calculate the minimum time (in seconds) a process must
	 * have slept before we consider it for idle swapping.
	 * This must be the number of seconds it takes to go through
	 * all of the cache. Doing this idle swapping makes the VM
	 * smoother once we start hitting swap.
	 */
	idle_time = atomic_read(&page_cache_size);
	idle_time += atomic_read(&buffermem_pages);
	idle_time /= (inactive_target + 1);

	priority = 6;
	do {
		made_progress = 0;

		if (current->need_resched) {
			__set_current_state(TASK_RUNNING);
			schedule();
		}

		while (refill_inactive_scan(priority, 1) ||
				swap_out(priority, gfp_mask, idle_time)) {
			made_progress = 1;
			if (--count <= 0)
				goto done;
		}

		/*
		 * don't be too light against the d/i cache since
	   	 * refill_inactive() almost never fail when there's
	   	 * really plenty of memory free. 
		 */
		shrink_dcache_memory(priority, gfp_mask);
		shrink_icache_memory(priority, gfp_mask);

		/* Try to get rid of some shared memory pages.. */
		while (shm_swap(priority, gfp_mask)) {
			made_progress = 1;
			if (--count <= 0)
				goto done;
		}

		/*
		 * Then, try to page stuff out..
		 */
		while (swap_out(priority, gfp_mask, 0)) {
			made_progress = 1;
			if (--count <= 0)
				goto done;
		}

		/*
		 * If we either have enough free memory, or if
		 * page_launder() will be able to make enough
		 * free memory, then stop.
		 */
		if (!inactive_shortage() || !free_shortage())
			goto done;

		/*
		 * Only switch to a lower "priority" if we
		 * didn't make any useful progress in the
		 * last loop.
		 */
		if (!made_progress)
			priority--;
	} while (priority >= 0);

	/* Always end on a refill_inactive.., may sleep... */
	while (refill_inactive_scan(0, 1)) {
		if (--count <= 0)
			goto done;
	}

done:
	return (count < start_count);
}

static int do_try_to_free_pages(unsigned int gfp_mask, int user)
{
	int ret = 0;

	/*
	 * If we're low on free pages, move pages from the
	 * inactive_dirty list to the inactive_clean list.
	 *
	 * Usually bdflush will have pre-cleaned the pages
	 * before we get around to moving them to the other
	 * list, so this is a relatively cheap operation.
	 */
	if (free_shortage() || nr_inactive_dirty_pages > nr_free_pages() +
			nr_inactive_clean_pages())
		ret += page_launder(gfp_mask, user);

	/*
	 * If needed, we move pages from the active list
	 * to the inactive list. We also "eat" pages from
	 * the inode and dentry cache whenever we do this.
	 */
	if (free_shortage() || inactive_shortage()) {
		shrink_dcache_memory(6, gfp_mask);
		shrink_icache_memory(6, gfp_mask);
		ret += refill_inactive(gfp_mask, user);
	} else {
		/*
		 * Reclaim unused slab cache memory.
		 */
		kmem_cache_reap(gfp_mask);
		ret = 1;
	}

	return ret;
}

DECLARE_WAIT_QUEUE_HEAD(kswapd_wait);
DECLARE_WAIT_QUEUE_HEAD(kswapd_done);
struct task_struct *kswapd_task;

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
int kswapd(void *unused)
{
	struct task_struct *tsk = current;

	tsk->session = 1;
	tsk->pgrp = 1;
	strcpy(tsk->comm, "kswapd");
	sigfillset(&tsk->blocked);
	kswapd_task = tsk;
	
	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
	tsk->flags |= PF_MEMALLOC;

	/*
	 * Kswapd main loop.
	 */
	for (;;) {
		static int recalc = 0;

		/* If needed, try to free some memory. */
		if (inactive_shortage() || free_shortage()) {
			int wait = 0;
			/* Do we need to do some synchronous flushing? */
			if (waitqueue_active(&kswapd_done))
				wait = 1;
			do_try_to_free_pages(GFP_KSWAPD, wait);
		}

		/*
		 * Do some (very minimal) background scanning. This
		 * will scan all pages on the active list once
		 * every minute. This clears old referenced bits
		 * and moves unused pages to the inactive list.
		 */
		refill_inactive_scan(6, 0);

		/* Once a second, recalculate some VM stats. */
		if (time_after(jiffies, recalc + HZ)) {
			recalc = jiffies;
			recalculate_vm_stats();
		}

		/*
		 * Wake up everybody waiting for free memory
		 * and unplug the disk queue.
		 */
		wake_up_all(&kswapd_done);
		run_task_queue(&tq_disk);

		/* 
		 * We go to sleep if either the free page shortage
		 * or the inactive page shortage is gone. We do this
		 * because:
		 * 1) we need no more free pages   or
		 * 2) the inactive pages need to be flushed to disk,
		 *    it wouldn't help to eat CPU time now ...
		 *
		 * We go to sleep for one second, but if it's needed
		 * we'll be woken up earlier...
		 */
		if (!free_shortage() || !inactive_shortage())
			interruptible_sleep_on_timeout(&kswapd_wait, HZ);
		/*
		 * TODO: insert out of memory check & oom killer
		 * invocation in an else branch here.
		 */
	}
}

void wakeup_kswapd(int block)
{
	DECLARE_WAITQUEUE(wait, current);

	if (current == kswapd_task)
		return;

	if (!block) {
		if (waitqueue_active(&kswapd_wait))
			wake_up(&kswapd_wait);
		return;
	}

	/*
	 * Kswapd could wake us up before we get a chance
	 * to sleep, so we have to be very careful here to
	 * prevent SMP races...
	 */
	__set_current_state(TASK_UNINTERRUPTIBLE);
	add_wait_queue(&kswapd_done, &wait);

	if (waitqueue_active(&kswapd_wait))
		wake_up(&kswapd_wait);
	schedule();

	remove_wait_queue(&kswapd_done, &wait);
	__set_current_state(TASK_RUNNING);
}

/*
 * Called by non-kswapd processes when they want more
 * memory but are unable to sleep on kswapd because
 * they might be holding some IO locks ...
 */
int try_to_free_pages(unsigned int gfp_mask)
{
	int ret = 1;

	if (gfp_mask & __GFP_WAIT) {
		current->flags |= PF_MEMALLOC;
		ret = do_try_to_free_pages(gfp_mask, 1);
		current->flags &= ~PF_MEMALLOC;
	}

	return ret;
}

DECLARE_WAIT_QUEUE_HEAD(kreclaimd_wait);
/*
 * Kreclaimd will move pages from the inactive_clean list to the
 * free list, in order to keep atomic allocations possible under
 * all circumstances. Even when kswapd is blocked on IO.
 */
int kreclaimd(void *unused)
{
	struct task_struct *tsk = current;
	pg_data_t *pgdat;

	tsk->session = 1;
	tsk->pgrp = 1;
	strcpy(tsk->comm, "kreclaimd");
	sigfillset(&tsk->blocked);
	current->flags |= PF_MEMALLOC;

	while (1) {

		/*
		 * We sleep until someone wakes us up from
		 * page_alloc.c::__alloc_pages().
		 */
		interruptible_sleep_on(&kreclaimd_wait);

		/*
		 * Move some pages from the inactive_clean lists to
		 * the free lists, if it is needed.
		 */
		pgdat = pgdat_list;
		do {
			int i;
			for(i = 0; i < MAX_NR_ZONES; i++) {
				zone_t *zone = pgdat->node_zones + i;
				if (!zone->size)
					continue;

				while (zone->free_pages < zone->pages_low) {
					struct page * page;
					page = reclaim_page(zone);
					if (!page)
						break;
					__free_page(page);
				}
			}
			pgdat = pgdat->node_next;
		} while (pgdat);
	}
}


static int __init kswapd_init(void)
{
	printk("Starting kswapd v1.8\n");
	swap_setup();
	kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);
	kernel_thread(kreclaimd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);
	return 0;
}

module_init(kswapd_init)