summaryrefslogtreecommitdiffstats
path: root/net/ipv4/arp.c
blob: 472f648117dd6ec5fd67ca721d71f61fde85f550 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
/* linux/net/inet/arp.c
 *
 * Copyright (C) 1994 by Florian  La Roche
 *
 * This module implements the Address Resolution Protocol ARP (RFC 826),
 * which is used to convert IP addresses (or in the future maybe other
 * high-level addresses) into a low-level hardware address (like an Ethernet
 * address).
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Fixes:
 *		Alan Cox	:	Removed the ethernet assumptions in 
 *					Florian's code
 *		Alan Cox	:	Fixed some small errors in the ARP 
 *					logic
 *		Alan Cox	:	Allow >4K in /proc
 *		Alan Cox	:	Make ARP add its own protocol entry
 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
 *		Stephen Henson	:	Add AX25 support to arp_get_info()
 *		Alan Cox	:	Drop data when a device is downed.
 *		Alan Cox	:	Use init_timer().
 *		Alan Cox	:	Double lock fixes.
 *		Martin Seine	:	Move the arphdr structure
 *					to if_arp.h for compatibility.
 *					with BSD based programs.
 *		Andrew Tridgell :       Added ARP netmask code and
 *					re-arranged proxy handling.
 *		Alan Cox	:	Changed to use notifiers.
 *		Niibe Yutaka	:	Reply for this device or proxies only.
 *		Alan Cox	:	Don't proxy across hardware types!
 *		Jonathan Naylor :	Added support for NET/ROM.
 *		Mike Shaver     :       RFC1122 checks.
 *		Jonathan Naylor :	Only lookup the hardware address for
 *					the correct hardware type.
 *		Germano Caronni	:	Assorted subtle races.
 *		Craig Schlenter :	Don't modify permanent entry 
 *					during arp_rcv.
 *		Russ Nelson	:	Tidied up a few bits.
 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
 *					eg intelligent arp probing and 
 *					generation
 *					of host down events.
 *		Alan Cox	:	Missing unlock in device events.
 *		Eckes		:	ARP ioctl control errors.
 *		Alexey Kuznetsov:	Arp free fix.
 *		Manuel Rodriguez:	Gratuitous ARP.
 *              Jonathan Layes  :       Added arpd support through kerneld 
 *                                      message queue (960314)
 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
 *		Stuart Cheshire	:	Metricom and grat arp fixes
 *					*** FOR 2.1 clean this up ***
 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
 *					folded into the mainstream FDDI code.
 *					Ack spit, Linus how did you allow that
 *					one in...
 */

/* RFC1122 Status:
   2.3.2.1 (ARP Cache Validation):
     MUST provide mechanism to flush stale cache entries (OK)
     SHOULD be able to configure cache timeout (OK)
     MUST throttle ARP retransmits (OK)
   2.3.2.2 (ARP Packet Queue):
     SHOULD save at least one packet from each "conversation" with an
       unresolved IP address.  (OK)
   950727 -- MS
*/
      
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/config.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/mm.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/fddidevice.h>
#include <linux/if_arp.h>
#include <linux/trdevice.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>

#include <net/ip.h>
#include <net/icmp.h>
#include <net/route.h>
#include <net/protocol.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/arp.h>
#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
#include <net/ax25.h>
#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
#include <net/netrom.h>
#endif
#endif
#include <linux/net_alias.h>
#ifdef CONFIG_ARPD
#include <net/netlink.h>
#endif

#include <asm/system.h>
#include <asm/uaccess.h>

/*
 *	Configurable Parameters
 */

/*
 *	After that time, an unused entry is deleted from the arp table.
 *	RFC1122 recommends set it to 60*HZ, if your site uses proxy arp
 *	and dynamic routing.
 */

#define ARP_TIMEOUT		(60*HZ)

int sysctl_arp_timeout = ARP_TIMEOUT;

/*
 *	How often is ARP cache checked for expire.
 *	It is useless to set ARP_CHECK_INTERVAL > ARP_TIMEOUT
 */

#define ARP_CHECK_INTERVAL	(60*HZ)

int sysctl_arp_check_interval = ARP_CHECK_INTERVAL;

/*
 *	Soft limit on ARP cache size.
 */

#if RT_CACHE_DEBUG >= 2
#define ARP_MAXSIZE	4
#else
#ifdef CONFIG_ARPD
#define ARP_MAXSIZE	64
#else
#define ARP_MAXSIZE	256
#endif /* CONFIG_ARPD */
#endif

/*
 *	Limit on unresolved ARP cache entries.
 */
#define ARP_MAX_UNRES (ARP_MAXSIZE/2)

/*
 *	Maximal number of skb's queued for resolution.
 */
#define ARP_MAX_UNRES_PACKETS 3

/*
 *	If an arp request is send, ARP_RES_TIME is the timeout value until the
 *	next request is send.
 * 	RFC1122: OK.  Throttles ARPing, as per 2.3.2.1. (MUST)
 *	The recommended minimum timeout is 1 second per destination.
 *
 */

#define ARP_RES_TIME		(5*HZ)

int sysctl_arp_res_time = ARP_RES_TIME;

/*
 *	The number of times an broadcast arp request is send, until
 *	the host is considered temporarily unreachable.
 */

#define ARP_MAX_TRIES		3

int sysctl_arp_max_tries = ARP_MAX_TRIES;

/*
 *	The entry is reconfirmed by sending point-to-point ARP
 *	request after ARP_CONFIRM_INTERVAL.
 *	RFC1122 recommends 60*HZ.
 *
 *	Warning: there exist nodes, that answer only broadcast
 *	ARP requests (Cisco-4000 in hot standby mode?)
 *	Now arp code should work with such nodes, but
 *	it still will generate redundant broadcast requests, so that
 *	this interval should be enough long.
 */

#define ARP_CONFIRM_INTERVAL	(300*HZ)

int sysctl_arp_confirm_interval = ARP_CONFIRM_INTERVAL;

/*
 *	We wait for answer to unicast request for ARP_CONFIRM_TIMEOUT.
 */

#define ARP_CONFIRM_TIMEOUT	ARP_RES_TIME

int sysctl_arp_confirm_timeout = ARP_CONFIRM_TIMEOUT;

/*
 *	The number of times an unicast arp request is retried, until
 *	the cache entry is considered suspicious.
 *	Value 0 means that no unicast pings will be sent.
 *	RFC1122 recommends 2.
 */

#define ARP_MAX_PINGS		1

int sysctl_arp_max_pings = ARP_MAX_PINGS;

/*
 *	When a host is dead, but someone tries to connect it,
 *	we do not remove corresponding cache entry (it would
 *	be useless, it will be created again immediately)
 *	Instead we prolongate interval between broadcasts
 *	to ARP_DEAD_RES_TIME.
 *	This interval should be not very long.
 *	(When the host will be up again, we will notice it only
 *	when ARP_DEAD_RES_TIME expires, or when the host will arp us.
 */

#define ARP_DEAD_RES_TIME	(60*HZ)

int sysctl_arp_dead_res_time = ARP_DEAD_RES_TIME;

static void arp_neigh_destroy(struct neighbour *neigh);

/*
 *	Interface to generic neighbour cache.
 */

struct neigh_ops arp_neigh_ops = {
	AF_INET,
	NULL,
	arp_find,
	arp_neigh_destroy
};


static atomic_t arp_size = ATOMIC_INIT(0);
static atomic_t arp_unres_size = ATOMIC_INIT(0);

#ifdef CONFIG_ARPD
static int arpd_not_running;
static int arpd_stamp;
#endif

static void arp_check_expire (unsigned long);  
static int  arp_update (u32 sip, char *sha, struct device * dev,
			unsigned long updated, int grat);

static struct timer_list arp_timer =
	{ NULL, NULL, ARP_CHECK_INTERVAL, 0L, &arp_check_expire };

/*
 * The default arp netmask is just 255.255.255.255 which means it's
 * a single machine entry. Only proxy entries can have other netmasks
 */

#define DEF_ARP_NETMASK (~0)

/*
 * 	The size of the hash table. Must be a power of two.
 */

#define ARP_TABLE_SIZE		16
#define FULL_ARP_TABLE_SIZE	(ARP_TABLE_SIZE+1)

struct arp_table *arp_tables[FULL_ARP_TABLE_SIZE] =
{
	NULL,
};

#define arp_proxy_list arp_tables[ARP_TABLE_SIZE]

/*
 *	The last bits in the IP address are used for the cache lookup.
 *	A special entry is used for proxy arp entries
 */

#define HASH(paddr) 		(htonl(paddr) & (ARP_TABLE_SIZE - 1))

/*
 *	Hardware header cache.
 *
 */

/*
 * Signal to device layer, that hardware address may be changed.
 */

static __inline__ void arp_update_hhs(struct arp_table * entry)
{
	struct hh_cache *hh;
	void (*update)(struct hh_cache*, struct device*, unsigned char*) =
		entry->u.neigh.dev->header_cache_update;

#if RT_CACHE_DEBUG >= 1
	if (!update && entry->u.neigh.hh)
	{
		printk(KERN_DEBUG "arp_update_hhs: no update callback for %s\n", entry->u.neigh.dev->name);
		return;
	}
#endif
	for (hh=entry->u.neigh.hh; hh; hh=hh->hh_next)
		update(hh, entry->u.neigh.dev, entry->u.neigh.ha);
}

/*
 *	Invalidate all hh's, so that higher level will not try to use it.
 */

static __inline__ void arp_invalidate_hhs(struct arp_table * entry)
{
	struct hh_cache *hh;

	for (hh=entry->u.neigh.hh; hh; hh=hh->hh_next)
		hh->hh_uptodate = 0;
}

/*
 * Purge all linked skb's of the entry.
 */

static void arp_purge_send_q(struct arp_table *entry)
{
	struct sk_buff *skb;

	/* Release the list of `skb' pointers. */
	while ((skb = skb_dequeue(&entry->u.neigh.arp_queue)) != NULL)
		kfree_skb(skb, FREE_WRITE);
}

static void arp_free(struct arp_table **entryp)
{
	struct arp_table *entry = *entryp;
	*entryp = entry->u.next;

	if (!(entry->flags&ATF_PUBL)) {
		atomic_dec(&arp_size);
		if (!(entry->flags&ATF_COM))
			atomic_dec(&arp_unres_size);
	}
	del_timer(&entry->timer);
	arp_purge_send_q(entry);
	arp_invalidate_hhs(entry);

	neigh_destroy(&entry->u.neigh);
}


static void arp_neigh_destroy(struct neighbour *neigh)
{
	struct arp_table *entry = (struct arp_table*)neigh;
	struct hh_cache *hh, *next;

	del_timer(&entry->timer);
	arp_purge_send_q(entry);

	hh = entry->u.neigh.hh;
	entry->u.neigh.hh = NULL;

	for ( ; hh; hh = next)
	{
		next = hh->hh_next;
		hh->hh_uptodate = 0;
		hh->hh_next = NULL;
		if (atomic_dec_and_test(&hh->hh_refcnt))
		{
#if RT_CACHE_DEBUG >= 2
			extern atomic_t hh_count;
			atomic_dec(&hh_count);
#endif
			kfree_s(hh, sizeof(struct hh_cache));
		}
	}
}


#ifdef CONFIG_ARPD

/*
 *	Send ARPD message.
 */
static void arpd_send(int req, u32 addr, struct device * dev, char *ha,
		      unsigned long updated)
{
	int retval;
	struct sk_buff *skb;
	struct arpd_request *arpreq;

	if (arpd_not_running)
		return;

	skb = alloc_skb(sizeof(struct arpd_request), GFP_ATOMIC);
	if (skb == NULL)
		return;

	arpreq=(struct arpd_request *)skb_put(skb, sizeof(struct arpd_request));
	arpreq->req = req;
	arpreq->ip  = addr;
	arpreq->dev = (unsigned long)dev;
	arpreq->stamp = arpd_stamp;
	arpreq->updated = updated;
	if (ha)
		memcpy(arpreq->ha, ha, sizeof(arpreq->ha));

	retval = netlink_post(NETLINK_ARPD, skb);
	if (retval)
	{
		kfree_skb(skb, FREE_WRITE);
		if (retval == -EUNATCH)
			arpd_not_running = 1;
	}
}

/*
 *	Send ARPD update message.
 */

static __inline__ void arpd_update(u32 ip, struct device *dev, char *ha)
{
	if (arpd_not_running)
		return;
	arpd_send(ARPD_UPDATE, ip, dev, ha, jiffies);
}


/*
 *	Send ARPD lookup request.
 */

static __inline__ void arpd_lookup(u32 addr, struct device * dev)
{
	if (arpd_not_running)
		return;
	arpd_send(ARPD_LOOKUP, addr, dev, NULL, 0);
}

/*
 *	Send ARPD flush message.
 */

static __inline__ void arpd_flush(struct device * dev)
{
	if (arpd_not_running)
		return;
	arpd_send(ARPD_FLUSH, 0, dev, NULL, 0);
}


static int arpd_callback(int minor, struct sk_buff *skb)
{
	struct device * dev;
	struct arpd_request *retreq;

	arpd_not_running = 0;

	if (skb->len != sizeof(struct arpd_request))
	{
		kfree_skb(skb, FREE_READ);
		return -EINVAL;
	}

	retreq = (struct arpd_request *)skb->data;
	dev = (struct device*)retreq->dev;

	if (retreq->stamp != arpd_stamp || !dev)
	{
		kfree_skb(skb, FREE_READ);
		return -EINVAL;
	}

	if (!retreq->updated)
	{
/*
 *	Invalid mapping: drop it and send ARP broadcast.
 */
		arp_send(ARPOP_REQUEST, ETH_P_ARP, retreq->ip, dev, dev->pa_addr, NULL, 
			 dev->dev_addr, NULL);
	}
	else
	{
		start_bh_atomic();
		arp_update(retreq->ip, retreq->ha, dev, retreq->updated, 0);
		end_bh_atomic();
	}

	kfree_skb(skb, FREE_READ);
	return sizeof(struct arpd_request);
}

#else

static __inline__ void arpd_update(u32 ip, struct device *dev, char *ha)
{
	return;
}

#endif /* CONFIG_ARPD */




/*
 *	ARP expiration routines.
 */

/*
 *	Force the expiry of an entry in the internal cache so the memory
 *	can be used for a new request.
 */

static int arp_force_expire(void)
{
	int i;
	struct arp_table *entry, **pentry;
	struct arp_table **oldest_entry = NULL;
	unsigned long oldest_used = ~0;
	unsigned long now = jiffies;
	int result = 0;

	static int last_index;

	if (last_index >= ARP_TABLE_SIZE)
		last_index = 0;

	for (i = 0; i < ARP_TABLE_SIZE; i++, last_index++)
	{
		pentry = &arp_tables[last_index & (ARP_TABLE_SIZE-1)];

		while ((entry = *pentry) != NULL)
		{
			if (!(entry->flags & ATF_PERM))
			{
				if (!atomic_read(&entry->u.neigh.refcnt) &&
				    now - entry->u.neigh.lastused > sysctl_arp_timeout)
				{
#if RT_CACHE_DEBUG >= 2
					printk("arp_force_expire: %08x expired\n", entry->ip);
#endif
					arp_free(pentry);
					result++;
					if (atomic_read(&arp_size) < ARP_MAXSIZE)
						goto done;
					continue;
				}
				if (!atomic_read(&entry->u.neigh.refcnt) &&
				    entry->u.neigh.lastused < oldest_used)
				{
					oldest_entry = pentry;
					oldest_used = entry->u.neigh.lastused;
				}
			}
			pentry = &entry->u.next;
		}
	}

done:
	if (result || !oldest_entry)
		return result;

#if RT_CACHE_DEBUG >= 2
	printk("arp_force_expire: expiring %08x\n", (*oldest_entry)->ip);
#endif
	arp_free(oldest_entry);
	return 1;
}

static void arp_unres_expire(void)
{
	int i;
	struct arp_table *entry, **pentry;
	unsigned long now = jiffies;

	for (i = 0; i < ARP_TABLE_SIZE; i++) {
		pentry = &arp_tables[i & (ARP_TABLE_SIZE-1)];

		while ((entry = *pentry) != NULL) {
			if (!(entry->flags & (ATF_PERM|ATF_COM)) &&
			    (entry->retries < sysctl_arp_max_tries ||
			     entry->timer.expires - now <
			     sysctl_arp_res_time - sysctl_arp_res_time/32)) {
				if (!atomic_read(&entry->u.neigh.refcnt)) {
#if RT_CACHE_DEBUG >= 2
					printk("arp_unres_expire: %08x discarded\n", entry->ip);
#endif
					arp_free(pentry);
					continue;
				}
				arp_purge_send_q(entry);
			}
			pentry = &entry->u.next;
		}
	}
}


/*
 *	Check if there are entries that are too old and remove them. If the
 *	ATF_PERM flag is set, they are always left in the arp cache (permanent
 *      entries). If an entry was not confirmed for ARP_CONFIRM_INTERVAL,
 *	send point-to-point ARP request.
 *	If it will not be confirmed for ARP_CONFIRM_TIMEOUT,
 *	give it to shred by arp_expire_entry.
 */

static void arp_check_expire(unsigned long dummy)
{
	int i;
	unsigned long now = jiffies;

	del_timer(&arp_timer);

#ifdef CONFIG_ARPD
	arpd_not_running = 0;
#endif

	ip_rt_check_expire();

	for (i = 0; i < ARP_TABLE_SIZE; i++)
	{
		struct arp_table *entry, **pentry;
		
		pentry = &arp_tables[i];

		while ((entry = *pentry) != NULL)
		{
			if (entry->flags & ATF_PERM)
			{
				pentry = &entry->u.next;
				continue;
			}

			if (!atomic_read(&entry->u.neigh.refcnt) &&
			    now - entry->u.neigh.lastused > sysctl_arp_timeout)
			{
#if RT_CACHE_DEBUG >= 2
				printk("arp_expire: %08x expired\n", entry->ip);
#endif
				arp_free(pentry);
				continue;
			}
			if (entry->last_updated &&
			    now - entry->last_updated > sysctl_arp_confirm_interval)
			{
				struct device * dev = entry->u.neigh.dev;
				entry->retries = sysctl_arp_max_tries+sysctl_arp_max_pings;
				del_timer(&entry->timer);
				entry->timer.expires = jiffies + ARP_CONFIRM_TIMEOUT;
				add_timer(&entry->timer);
				arp_send(ARPOP_REQUEST, ETH_P_ARP, entry->ip,
					 dev, dev->pa_addr, entry->u.neigh.ha,
					 dev->dev_addr, NULL);
#if RT_CACHE_DEBUG >= 2
				printk("arp_expire: %08x requires confirmation\n", entry->ip);
#endif
			}
			pentry = &entry->u.next;	/* go to next entry */
		}
	}

	/*
	 *	Set the timer again.
	 */

	arp_timer.expires = jiffies + sysctl_arp_check_interval;
	add_timer(&arp_timer);
}

/*
 *	This function is called, if an entry is not resolved in ARP_RES_TIME.
 *	When more than MAX_ARP_TRIES retries was done, release queued skb's,
 *	but not discard entry itself if  it is in use.
 */

static void arp_expire_request (unsigned long arg)
{
	struct arp_table *entry = (struct arp_table *) arg;
	struct arp_table **pentry;
	unsigned long hash;

	del_timer(&entry->timer);

	/*	If entry is COMPLETE but old,
	 *	it means that point-to-point ARP ping has been failed
	 *	(It really occurs with Cisco 4000 routers)
	 *	We should reconfirm it.
	 */
	
	if ((entry->flags & ATF_COM) && entry->last_updated
	    && jiffies - entry->last_updated <= sysctl_arp_confirm_interval)
		return;

	if (entry->last_updated && --entry->retries > 0)
	{
		struct device *dev = entry->u.neigh.dev;

#if RT_CACHE_DEBUG >= 2
		printk("arp_expire_request: %08x timed out\n", entry->ip);
#endif
		/* Set new timer. */
		entry->timer.expires = jiffies + sysctl_arp_res_time;
		add_timer(&entry->timer);
		arp_send(ARPOP_REQUEST, ETH_P_ARP, entry->ip, dev, dev->pa_addr,
			 entry->retries > sysctl_arp_max_tries ? entry->u.neigh.ha : NULL,
			 dev->dev_addr, NULL);
		return;
	}

	/*
	 *	The host is really dead.
	 */

	arp_purge_send_q(entry);

	if (atomic_read(&entry->u.neigh.refcnt))
	{
		/*
		 *	The host is dead, but someone refers to it.
		 *	It is useless to drop this entry just now,
		 *	it will be born again, so that
		 *	we keep it, but slow down retransmitting
		 *	to ARP_DEAD_RES_TIME.
		 */

		struct device *dev = entry->u.neigh.dev;
#if RT_CACHE_DEBUG >= 2
		printk("arp_expire_request: %08x is dead\n", entry->ip);
#endif
		entry->retries = sysctl_arp_max_tries;
		if (entry->flags&ATF_COM)
			atomic_inc(&arp_unres_size);
		entry->flags &= ~ATF_COM;
		arp_invalidate_hhs(entry);

		/*
		 *	Declare the entry dead.
		 */
		entry->last_updated = 0;

		entry->timer.expires = jiffies + sysctl_arp_dead_res_time;
		add_timer(&entry->timer);
		arp_send(ARPOP_REQUEST, ETH_P_ARP, entry->ip, dev, dev->pa_addr, 
			 NULL, dev->dev_addr, NULL);
		return;
	}

	entry->last_updated = 0;

	hash = HASH(entry->ip);

	pentry = &arp_tables[hash];

	while (*pentry != NULL)
	{
		if (*pentry != entry)
		{
			pentry = &(*pentry)->u.next;
			continue;
		}
#if RT_CACHE_DEBUG >= 2
		printk("arp_expire_request: %08x is killed\n", entry->ip);
#endif
		arp_free(pentry);
	}
}


/* 
 * Allocate memory for a new entry.  If we are at the maximum limit
 * of the internal ARP cache, arp_force_expire() an entry.
 */

static struct arp_table * arp_alloc(int how)
{
	struct arp_table * entry;

	if (how && atomic_read(&arp_size) >= ARP_MAXSIZE)
		arp_force_expire();
	if (how > 1 && atomic_read(&arp_unres_size) >= ARP_MAX_UNRES) {
		arp_unres_expire();
		if (atomic_read(&arp_unres_size) >= ARP_MAX_UNRES) {
			printk(KERN_DEBUG "arp_unres_size=%d\n",
			       atomic_read(&arp_unres_size));
			return NULL;
		}
	}

	entry = (struct arp_table *)neigh_alloc(sizeof(struct arp_table),
						&arp_neigh_ops);

	if (entry != NULL)
	{
		atomic_set(&entry->u.neigh.refcnt, 1);

		if (how)
			atomic_inc(&arp_size);

                entry->mask = DEF_ARP_NETMASK;
		init_timer(&entry->timer);
		entry->timer.function = arp_expire_request;
		entry->timer.data = (unsigned long)entry;
		entry->last_updated = jiffies;
	}
	return entry;
}



/*
 *	Purge a device from the ARP queue
 */
 
int arp_device_event(struct notifier_block *this, unsigned long event, void *ptr)
{
	struct device *dev=ptr;
	int i;
	
	if (event != NETDEV_DOWN)
		return NOTIFY_DONE;

#ifdef  CONFIG_ARPD
	arpd_flush(dev);
	arpd_stamp++;
#endif

	for (i = 0; i < FULL_ARP_TABLE_SIZE; i++)
	{
		struct arp_table *entry;
		struct arp_table **pentry = &arp_tables[i];

		start_bh_atomic();

		while ((entry = *pentry) != NULL)
		{
			if (entry->u.neigh.dev != dev)
			{
				pentry = &entry->u.next;
				continue;
			}
			arp_free(pentry);
		}

		end_bh_atomic();
	}
	return NOTIFY_DONE;
}



/*
 *	This will try to retransmit everything on the queue.
 */

static void arp_send_q(struct arp_table *entry)
{
	struct sk_buff *skb;

	while((skb = skb_dequeue(&entry->u.neigh.arp_queue)) != NULL)
		dev_queue_xmit(skb);
}


static int
arp_update (u32 sip, char *sha, struct device * dev,
	    unsigned long updated, int grat)
{
	struct arp_table * entry;
	unsigned long hash;

	if (updated == 0)
	{
		updated = jiffies;
		arpd_update(sip, dev, sha);
	}

	hash = HASH(sip);

	for (entry=arp_tables[hash]; entry; entry = entry->u.next)
		if (entry->ip == sip && entry->u.neigh.dev == dev)
			break;

	if (entry)
	{
/*
 *	Entry found; update it only if it is not a permanent entry.
 */
		if (!(entry->flags & ATF_PERM)) 
		{
			del_timer(&entry->timer);
			entry->last_updated = updated;
			if (memcmp(entry->u.neigh.ha, sha, dev->addr_len) != 0)
			{
				memcpy(entry->u.neigh.ha, sha, dev->addr_len);
				if (entry->flags & ATF_COM)
					arp_update_hhs(entry);
			}
		}

		if (!(entry->flags & ATF_COM))
		{
/*
 *	Switch to complete status.
 */
			entry->flags |= ATF_COM;
			atomic_dec(&arp_unres_size);
			arp_update_hhs(entry);
/* 
 *	Send out waiting packets.
 */
			arp_send_q(entry);
		}
		return 1;
	}

/*
 * 	No entry found.  Need to add a new entry to the arp table.
 */
	if (grat)
		return 0;

	entry = arp_alloc(1);
	if (!entry)
		return 0;

	entry->ip = sip;
	entry->flags = ATF_COM;
	memcpy(entry->u.neigh.ha, sha, dev->addr_len);
	entry->u.neigh.dev = dev;
	entry->hatype = dev->type;
	entry->last_updated = updated;

	entry->u.next = arp_tables[hash];
	arp_tables[hash] = entry;
	neigh_release(&entry->u.neigh);
	return 0;
}



static __inline__ struct arp_table *arp_lookup(u32 paddr, struct device * dev)
{
	struct arp_table *entry;

	for (entry = arp_tables[HASH(paddr)]; entry != NULL; entry = entry->u.next)
		if (entry->ip == paddr && entry->u.neigh.dev == dev)
			return entry;
	return NULL;
}

static int arp_set_predefined(int addr_hint, unsigned char * haddr, u32 paddr, struct device * dev)
{
	switch (addr_hint)
	{
		case IS_MYADDR:
			printk(KERN_DEBUG "ARP: arp called for own IP address\n");
			memcpy(haddr, dev->dev_addr, dev->addr_len);
			return 1;
		case IS_MULTICAST:
			if(dev->type==ARPHRD_ETHER || dev->type==ARPHRD_IEEE802 
			   || dev->type==ARPHRD_FDDI)
			{
				u32 taddr;
				haddr[0]=0x01;
				haddr[1]=0x00;
				haddr[2]=0x5e;
				taddr=ntohl(paddr);
				haddr[5]=taddr&0xff;
				taddr=taddr>>8;
				haddr[4]=taddr&0xff;
				taddr=taddr>>8;
				haddr[3]=taddr&0x7f;
				return 1;
			}
		/*
		 *	If a device does not support multicast broadcast the stuff (eg AX.25 for now)
		 */
		
		case IS_BROADCAST:
			memcpy(haddr, dev->broadcast, dev->addr_len);
			return 1;
	}
	return 0;
}


static void arp_start_resolution(struct arp_table *entry)
{
	struct device * dev = entry->u.neigh.dev;

	del_timer(&entry->timer);
	entry->timer.expires = jiffies + sysctl_arp_res_time;
	entry->retries = sysctl_arp_max_tries;
	add_timer(&entry->timer);
#ifdef CONFIG_ARPD
	if (!arpd_not_running)
		arpd_lookup(entry->ip, dev);
	else
#endif
		arp_send(ARPOP_REQUEST, ETH_P_ARP, entry->ip, dev,
			 dev->pa_addr, NULL, dev->dev_addr, NULL);
}

/*
 *	Create a new unresolved entry.
 */

struct arp_table * arp_new_entry(u32 paddr, struct device *dev, struct sk_buff *skb)
{
	struct arp_table *entry;
	unsigned long hash = HASH(paddr);

	entry = arp_alloc(2);

	if (entry != NULL)
	{
		entry->ip = paddr;
		entry->u.neigh.dev = dev;
		entry->hatype = dev->type;

		if (skb != NULL)
			skb_queue_tail(&entry->u.neigh.arp_queue, skb);

		atomic_inc(&arp_unres_size);
		entry->u.next = arp_tables[hash];
		arp_tables[hash] = entry;
		arp_start_resolution(entry);
		neigh_release(&entry->u.neigh);
	}
	return entry;
}


/*
 *	Find an arp mapping in the cache. If not found, post a request.
 */

int arp_find(unsigned char *haddr, struct sk_buff *skb)
{
	struct device *dev = skb->dev;
	u32 paddr;
	struct arp_table *entry;
	unsigned long hash;

	if (!skb->dst) {
		printk(KERN_DEBUG "arp_find called with dst==NULL\n");
		return 1;
	}

	paddr = ((struct rtable*)skb->dst)->rt_gateway;

	if (arp_set_predefined(__ip_chk_addr(paddr), haddr, paddr, dev)) {
		if (skb)
			skb->arp = 1;
		return 0;
	}

	hash = HASH(paddr);

	start_bh_atomic();

	/*
	 *	Find an entry
	 */
	entry = arp_lookup(paddr, dev);

	if (entry != NULL) 	/* It exists */
	{
		if (entry->flags & ATF_COM)
		{
			entry->u.neigh.lastused = jiffies;
			memcpy(haddr, entry->u.neigh.ha, dev->addr_len);
			if (skb)
				skb->arp = 1;
			end_bh_atomic();
			return 0;
		}

		/*
		 *	A request was already sent, but no reply yet. Thus
		 *	queue the packet with the previous attempt
		 */
			
		if (skb != NULL)
		{
			if (entry->last_updated)
			{
				if (entry->u.neigh.arp_queue.qlen < ARP_MAX_UNRES_PACKETS)
					skb_queue_tail(&entry->u.neigh.arp_queue, skb);
				else
					kfree_skb(skb, FREE_WRITE);
			}
			/*
			 * If last_updated==0 host is dead, so
			 * drop skb's and set socket error.
			 */
			else
			{
				icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
				kfree_skb(skb, FREE_WRITE);
			}
		}
		end_bh_atomic();
		return 1;
	}

	entry = arp_new_entry(paddr, dev, skb);

	if (skb != NULL && !entry)
		kfree_skb(skb, FREE_WRITE);

	end_bh_atomic();
	return 1;
}

int arp_find_1(unsigned char *haddr, struct dst_entry *dst,
	       struct neighbour *neigh)
{
	struct rtable *rt = (struct rtable*)dst;
	struct device *dev = dst->dev;
	u32 paddr = rt->rt_gateway;
	struct arp_table *entry;
	unsigned long hash;

	if (!neigh)
	{
		if ((rt->rt_flags & RTF_MULTICAST) &&
		    (dev->type==ARPHRD_ETHER || dev->type==ARPHRD_IEEE802))
		{
			u32 taddr;
			haddr[0]=0x01;
			haddr[1]=0x00;
			haddr[2]=0x5e;
			taddr=ntohl(paddr);
			haddr[5]=taddr&0xff;
			taddr=taddr>>8;
			haddr[4]=taddr&0xff;
			taddr=taddr>>8;
			haddr[3]=taddr&0x7f;
			return 1;
		}
		if (rt->rt_flags & (RTF_BROADCAST|RTF_MULTICAST))
		{
			memcpy(haddr, dev->broadcast, dev->addr_len);
			return 1;
		}
		if (rt->rt_flags & RTF_LOCAL)
		{
			printk(KERN_DEBUG "ARP: arp called for own IP address\n");
			memcpy(haddr, dev->dev_addr, dev->addr_len);
			return 1;
		}
		return 0;
	}

	hash = HASH(paddr);

	start_bh_atomic();

	entry = (struct arp_table*)neigh;

	if (entry->flags & ATF_COM)
	{
		entry->u.neigh.lastused = jiffies;
		memcpy(haddr, entry->u.neigh.ha, dev->addr_len);
		end_bh_atomic();
		return 1;
	}

	end_bh_atomic();
	return 0;
}


struct neighbour* arp_find_neighbour(struct dst_entry *dst, int resolve)
{
	struct rtable *rt = (struct rtable*)dst;
	struct device *dev = rt->u.dst.dev;
	u32 paddr = rt->rt_gateway;
	struct arp_table *entry;
	unsigned long hash;

	if (dst->ops->family != AF_INET)
		return NULL;

	if ((dev->flags & (IFF_LOOPBACK|IFF_NOARP)) ||
	    (rt->rt_flags & (RTF_LOCAL|RTF_BROADCAST|RTF_MULTICAST)))
		return NULL;

	hash = HASH(paddr);

	start_bh_atomic();

	/*
	 *	Find an entry
	 */
	entry = arp_lookup(paddr, dev);

	if (entry != NULL) 	/* It exists */
	{
		atomic_inc(&entry->u.neigh.refcnt);
		end_bh_atomic();
		entry->u.neigh.lastused = jiffies;
		return (struct neighbour*)entry;
	}

	if (!resolve)
		return NULL;

	entry = arp_new_entry(paddr, dev, NULL);

	if (entry)
		atomic_inc(&entry->u.neigh.refcnt);

	end_bh_atomic();

	return (struct neighbour*)entry;
}

/*
 *	Interface to link layer: send routine and receive handler.
 */

/*
 *	Create and send an arp packet. If (dest_hw == NULL), we create a broadcast
 *	message.
 */

void arp_send(int type, int ptype, u32 dest_ip, 
	      struct device *dev, u32 src_ip, 
	      unsigned char *dest_hw, unsigned char *src_hw,
	      unsigned char *target_hw)
{
	struct sk_buff *skb;
	struct arphdr *arp;
	unsigned char *arp_ptr;

	/*
	 *	No arp on this interface.
	 */
	
	if (dev->flags&IFF_NOARP)
		return;

	/*
	 *	Allocate a buffer
	 */
	
	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
				+ dev->hard_header_len, GFP_ATOMIC);
	if (skb == NULL)
	{
		printk(KERN_DEBUG "ARP: no memory to send an arp packet\n");
		return;
	}
	skb_reserve(skb, dev->hard_header_len);
	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
	skb->arp = 1;
	skb->dev = dev;
	skb->protocol = htons (ETH_P_ARP);

	/*
	 *	Fill the device header for the ARP frame
	 */
	dev->hard_header(skb,dev,ptype,dest_hw?dest_hw:dev->broadcast,src_hw?src_hw:NULL,skb->len);

	/*
	 * Fill out the arp protocol part.
	 *
	 * The arp hardware type should match the device type, except for FDDI,
	 * which (according to RFC 1390) should always equal 1 (Ethernet).
	 */
#ifdef CONFIG_FDDI
	arp->ar_hrd = (dev->type == ARPHRD_FDDI) ? htons(ARPHRD_ETHER) : htons(dev->type);
#else
	arp->ar_hrd = htons(dev->type);
#endif
	/*
	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
	 *	DIX code for the protocol. Make these device structure fields.
	 */
#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
	arp->ar_pro = (dev->type == ARPHRD_AX25 || dev->type == ARPHRD_NETROM) ? htons(AX25_P_IP) : htons(ETH_P_IP);
#else
	arp->ar_pro = (dev->type != ARPHRD_AX25) ? htons(ETH_P_IP) : htons(AX25_P_IP);
#endif
#else
	arp->ar_pro = htons(ETH_P_IP);
#endif
	arp->ar_hln = dev->addr_len;
	arp->ar_pln = 4;
	arp->ar_op = htons(type);

	arp_ptr=(unsigned char *)(arp+1);

	memcpy(arp_ptr, src_hw, dev->addr_len);
	arp_ptr+=dev->addr_len;
	memcpy(arp_ptr, &src_ip,4);
	arp_ptr+=4;
	if (target_hw != NULL)
		memcpy(arp_ptr, target_hw, dev->addr_len);
	else
		memset(arp_ptr, 0, dev->addr_len);
	arp_ptr+=dev->addr_len;
	memcpy(arp_ptr, &dest_ip, 4);
	skb->dev = dev;
	skb->priority = 0;

	dev_queue_xmit(skb);
}


/*
 *	Receive an arp request by the device layer.
 */

int arp_rcv(struct sk_buff *skb, struct device *dev, struct packet_type *pt)
{
	struct arphdr *arp = skb->nh.arph;
	unsigned char *arp_ptr= (unsigned char *)(arp+1);
	struct rtable *rt;
	unsigned char *sha, *tha;
	u32 sip, tip;

/*
 *	The hardware length of the packet should match the hardware length
 *	of the device.  Similarly, the hardware types should match.  The
 *	device should be ARP-able.  Also, if pln is not 4, then the lookup
 *	is not from an IP number.  We can't currently handle this, so toss
 *	it. 
 */  
#if defined(CONFIG_FDDI) || defined(CONFIG_AP1000)
	if (dev->type == ARPHRD_FDDI)
	{
		/*
		 * According to RFC 1390, FDDI devices should accept ARP hardware types
		 * of 1 (Ethernet).  However, to be more robust, we'll accept hardware
		 * types of either 1 (Ethernet) or 6 (IEEE 802.2).
		 */
		if (arp->ar_hln != dev->addr_len    || 
		    ((ntohs(arp->ar_hrd) != ARPHRD_ETHER) && (ntohs(arp->ar_hrd) != ARPHRD_IEEE802)) ||
		    dev->flags & IFF_NOARP          ||
		    skb->pkt_type == PACKET_OTHERHOST ||
		    arp->ar_pln != 4)
		{
			kfree_skb(skb, FREE_READ);
			return 0;
		}
	}
	else
	{
		if (arp->ar_hln != dev->addr_len    || 
		    dev->type != ntohs(arp->ar_hrd) ||
		    dev->flags & IFF_NOARP          ||
		    skb->pkt_type == PACKET_OTHERHOST ||
		    arp->ar_pln != 4)
		{
			kfree_skb(skb, FREE_READ);
			return 0;
		}
	}
#else
	if (arp->ar_hln != dev->addr_len    || 
	    dev->type != ntohs(arp->ar_hrd) || 
		dev->flags & IFF_NOARP          ||
	        skb->pkt_type == PACKET_OTHERHOST ||
		arp->ar_pln != 4) {
		kfree_skb(skb, FREE_READ);
		return 0;
	}
#endif

/*
 *	Another test.
 *	The logic here is that the protocol being looked up by arp should 
 *	match the protocol the device speaks.  If it doesn't, there is a
 *	problem, so toss the packet.
 */

  	switch (dev->type)
  	{
#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
		case ARPHRD_AX25:
			if(arp->ar_pro != htons(AX25_P_IP))
			{
				kfree_skb(skb, FREE_READ);
				return 0;
			}
			break;
#endif
#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
		case ARPHRD_NETROM:
			if(arp->ar_pro != htons(AX25_P_IP))
			{
				kfree_skb(skb, FREE_READ);
				return 0;
			}
			break;
#endif
		case ARPHRD_ETHER:
		case ARPHRD_ARCNET:
		case ARPHRD_METRICOM:
		case ARPHRD_IEEE802:
		case ARPHRD_FDDI:
			if(arp->ar_pro != htons(ETH_P_IP))
			{
				kfree_skb(skb, FREE_READ);
				return 0;
			}
			break;

		default:
			printk(KERN_ERR "ARP: dev->type mangled!\n");
			kfree_skb(skb, FREE_READ);
			return 0;
	}

/*
 *	Extract fields
 */

	sha=arp_ptr;
	arp_ptr += dev->addr_len;
	memcpy(&sip, arp_ptr, 4);
	arp_ptr += 4;
	tha=arp_ptr;
	arp_ptr += dev->addr_len;
	memcpy(&tip, arp_ptr, 4);
/* 
 *	Check for bad requests for 127.x.x.x and requests for multicast
 *	addresses.  If this is one such, delete it.
 */
	if (LOOPBACK(tip) || MULTICAST(tip)) {
		kfree_skb(skb, FREE_READ);
		return 0;
	}
	if (ip_route_input(skb, tip, sip, 0, dev)) {
		kfree_skb(skb, FREE_READ);
		return 0;
	}
	dev = skb->dev;
	rt = (struct rtable*)skb->dst;
	if (dev->type != ntohs(arp->ar_hrd) || dev->flags&IFF_NOARP ||
	    rt->rt_flags&RTF_BROADCAST) {
		kfree_skb(skb, FREE_READ);
		return 0;
	}

/*
 *  Process entry.  The idea here is we want to send a reply if it is a
 *  request for us or if it is a request for someone else that we hold
 *  a proxy for.  We want to add an entry to our cache if it is a reply
 *  to us or if it is a request for our address.  
 *  (The assumption for this last is that if someone is requesting our 
 *  address, they are probably intending to talk to us, so it saves time 
 *  if we cache their address.  Their address is also probably not in 
 *  our cache, since ours is not in their cache.)
 * 
 *  Putting this another way, we only care about replies if they are to
 *  us, in which case we add them to the cache.  For requests, we care
 *  about those for us and those for our proxies.  We reply to both,
 *  and in the case of requests for us we add the requester to the arp 
 *  cache.
 */

	if (arp->ar_op == htons(ARPOP_REQUEST)) {
		struct arp_table *entry;

		for (entry = arp_proxy_list; entry; entry = entry->u.next) {
			if (!((entry->ip^tip)&entry->mask) &&
			    ((!entry->u.neigh.dev &&
			      (!(entry->flags & ATF_COM) || entry->hatype == dev->type))
			     || entry->u.neigh.dev == dev) )
				break;
		}

		if (entry && !(entry->flags & ATF_DONTPUB)) {
			char *ha = (entry->flags & ATF_COM) ? entry->u.neigh.ha : dev->dev_addr;

			if (rt->rt_flags&(RTF_LOCAL|RTF_NAT) ||
			    (!(rt->rt_flags&RTCF_DOREDIRECT) &&
			     rt->u.dst.dev != dev))
				arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,ha,sha);
		}
	}

	start_bh_atomic();
	arp_update(sip, sha, dev, 0, !RT_LOCALADDR(rt->rt_flags) && dev->type != ARPHRD_METRICOM);
	end_bh_atomic();
	kfree_skb(skb, FREE_READ);
	return 0;
}



/*
 *	User level interface (ioctl, /proc)
 */

/*
 *	Set (create) an ARP cache entry.
 */

int arp_req_set(struct arpreq *r, struct device * dev)
{
	struct arp_table *entry, **entryp;
	struct sockaddr_in *si;
	unsigned char *ha = NULL;
	u32 ip;
	u32 mask = DEF_ARP_NETMASK;

	/*
	 *	Extract netmask (if supplied).
	 */

	if (r->arp_flags&ATF_NETMASK)
	{
		si = (struct sockaddr_in *) &r->arp_netmask;
		mask = si->sin_addr.s_addr;
	}

	/*
	 *	Extract destination.
	 */
	
	si = (struct sockaddr_in *) &r->arp_pa;
	ip = si->sin_addr.s_addr;

	if (r->arp_flags&ATF_PUBL)
	{
		if (ip & ~mask)
			return -EINVAL;
		if (!dev && (r->arp_flags & ATF_COM))
		{
			dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data);
			if (!dev)
				return -ENODEV;
		}
	}
	else
	{
		struct rtable * rt;
		int err;

		if ((r->arp_flags & ATF_PERM) && !(r->arp_flags & ATF_COM))
			return -EINVAL;
		err = ip_route_output(&rt, ip, 0, 1, dev);
		if (err)
			return err;
		if (!dev)
			dev = rt->u.dst.dev;
		if (rt->rt_flags&(RTF_LOCAL|RTF_BROADCAST|RTF_MULTICAST|RTCF_NAT)) {
			if (rt->rt_flags&RTF_BROADCAST &&
			    dev->type == ARPHRD_METRICOM &&
			    r->arp_ha.sa_family == ARPHRD_METRICOM) {
				memcpy(dev->broadcast, r->arp_ha.sa_data, dev->addr_len);
				ip_rt_put(rt);
				return 0;
			}
			ip_rt_put(rt);
			return -EINVAL;
		}
		ip_rt_put(rt);
	}
	
	if (dev && (dev->flags&(IFF_LOOPBACK|IFF_NOARP)))
		return -ENODEV;

	if (dev && r->arp_ha.sa_family != dev->type)	
		return -EINVAL;
		
	start_bh_atomic();

	if (!(r->arp_flags & ATF_PUBL))
		entryp = &arp_tables[HASH(ip)];
	else
		entryp = &arp_proxy_list;

	while ((entry = *entryp) != NULL)
	{
		if (entry->mask == mask)
			break;
		if ((entry->mask & mask) != mask)
			break;
		entryp = &entry->u.next;
	}
	while ((entry = *entryp) != NULL && entry->mask == mask)
	{
		if (entry->ip == ip)
			break;
		entryp = &entry->u.next;
	}
	while ((entry = *entryp) != NULL && entry->mask == mask &&
	       entry->ip == ip)
	{
		if (!entry->u.neigh.dev || entry->u.neigh.dev == dev)
			break;
		entryp = &entry->u.next;
	}

	while ((entry = *entryp) != NULL)
	{
		if (entry->ip != ip || entry->mask != mask ||
		    entry->u.neigh.dev != dev)
		{
			entry = NULL;
			break;
		}
		if (entry->hatype == r->arp_ha.sa_family &&
		    (!(r->arp_flags & ATF_MAGIC) ||
		     entry->flags == r->arp_flags))
			break;
		entryp = &entry->u.next;
	}

	if (entry)
		atomic_inc(&entry->u.neigh.refcnt);
	else
	{
		entry = arp_alloc(r->arp_flags&ATF_PUBL ? 0 : 1);
		if (entry == NULL)
		{
			end_bh_atomic();
			return -ENOMEM;
		}
		entry->ip = ip;
		entry->u.neigh.dev = dev;
		entry->mask = mask;

		if (dev)
			entry->hatype = dev->type;

		entry->u.next = *entryp;
		*entryp = entry;
	}
	entry->flags = r->arp_flags;
	if (!(entry->flags&(ATF_PUBL|ATF_COM)))
		atomic_inc(&arp_unres_size);

	if (entry->flags & ATF_PUBL)
	{
		if (entry->flags & ATF_COM)
		{
			entry->hatype = r->arp_ha.sa_family;
			ha = r->arp_ha.sa_data;
		}
		else if (dev)
			ha = dev->dev_addr;
	}
	else
		ha = r->arp_ha.sa_data;

	if (ha)
		memcpy(entry->u.neigh.ha, ha, dev ? dev->addr_len : MAX_ADDR_LEN);
	else
		memset(entry->u.neigh.ha, 0, MAX_ADDR_LEN);

	entry->last_updated = entry->u.neigh.lastused = jiffies;
	
	if (!(entry->flags & ATF_PUBL))
	{
		if (entry->flags & ATF_COM)
		{
			arpd_update(entry->ip, entry->u.neigh.dev, ha);
			arp_update_hhs(entry);
		}
		else
			arp_start_resolution(entry);
	}

	neigh_release(&entry->u.neigh);
	end_bh_atomic();
	return 0;
}

/*
 *	Get an ARP cache entry.
 */

static int arp_req_get(struct arpreq *r, struct device *dev)
{
	struct arp_table *entry;
	struct sockaddr_in *si;
	u32 mask = DEF_ARP_NETMASK;

	if (r->arp_flags&ATF_NETMASK)
	{
		si = (struct sockaddr_in *) &r->arp_netmask;
		mask = si->sin_addr.s_addr;
	}

	si = (struct sockaddr_in *) &r->arp_pa;

	start_bh_atomic();

	if (!(r->arp_flags & ATF_PUBL))
		entry = arp_tables[HASH(si->sin_addr.s_addr)];
	else
		entry = arp_proxy_list;

	for ( ; entry ;entry = entry->u.next)
	{
		if (entry->ip == si->sin_addr.s_addr &&
		    (!(r->arp_flags&ATF_NETMASK) || entry->mask == mask) &&
		    ( (r->arp_flags&ATF_PUBL) ?
		      (entry->u.neigh.dev == dev && entry->hatype == r->arp_ha.sa_family)
		     : (entry->u.neigh.dev == dev || !dev)))
		{
			if (entry->u.neigh.dev)
			{
				memcpy(r->arp_ha.sa_data, entry->u.neigh.ha, entry->u.neigh.dev->addr_len);
				r->arp_ha.sa_family = entry->u.neigh.dev->type;
				strncpy(r->arp_dev, entry->u.neigh.dev->name, sizeof(r->arp_dev));
			}
			else
			{
				r->arp_ha.sa_family = entry->hatype;
				memset(r->arp_ha.sa_data, 0, sizeof(r->arp_ha.sa_data));
			}
			r->arp_flags = entry->flags;
			end_bh_atomic();
			return 0;
		}
	}

	end_bh_atomic();
	return -ENXIO;
}

int arp_req_delete(struct arpreq *r, struct device * dev)
{
	struct sockaddr_in	*si;
	struct arp_table	*entry, **entryp;
	int	retval = -ENXIO;
	u32	mask = DEF_ARP_NETMASK;

	if (r->arp_flags&ATF_NETMASK)
	{
		si = (struct sockaddr_in *) &r->arp_netmask;
		mask = si->sin_addr.s_addr;
	}

	si = (struct sockaddr_in *) &r->arp_pa;

	start_bh_atomic();

	if (!(r->arp_flags & ATF_PUBL))
		entryp = &arp_tables[HASH(si->sin_addr.s_addr)];
	else
		entryp = &arp_proxy_list;

	while ((entry = *entryp) != NULL)
	{
		if (entry->ip == si->sin_addr.s_addr
		    && (!(r->arp_flags&ATF_NETMASK) || entry->mask == mask)
		    && (entry->u.neigh.dev == dev || (!(r->arp_flags&ATF_PUBL) && !dev))
		    && (!(r->arp_flags&ATF_MAGIC) || r->arp_flags == entry->flags))
		{
			if (!atomic_read(&entry->u.neigh.refcnt))
			{
				arp_free(entryp);
				retval = 0;
				continue;
			}
			if (retval)
				retval = -EBUSY;
		}
		entryp = &entry->u.next;
	}

	end_bh_atomic();
	return retval;
}

/*
 *	Handle an ARP layer I/O control request.
 */

int arp_ioctl(unsigned int cmd, void *arg)
{
	int err;
	struct arpreq r;
	struct device * dev = NULL;

	switch(cmd)
	{
		case SIOCDARP:
		case SIOCSARP:
			if (!suser())
				return -EPERM;
		case SIOCGARP:
			err = copy_from_user(&r, arg, sizeof(struct arpreq));
			if (err)
				return -EFAULT;
			break;
		default:
			return -EINVAL;
	}

	if (r.arp_pa.sa_family != AF_INET)
		return -EPFNOSUPPORT;

	if (!(r.arp_flags & ATF_PUBL) &&
	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB|ATF_MAGIC)))
		return -EINVAL;
	if (!(r.arp_flags & ATF_NETMASK))
		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr=DEF_ARP_NETMASK;

	if (r.arp_dev[0])
	{
		if ((dev = dev_get(r.arp_dev)) == NULL)
			return -ENODEV;

		if (!r.arp_ha.sa_family)
			r.arp_ha.sa_family = dev->type;
		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
			return -EINVAL;
	}

	switch(cmd)
	{
		case SIOCDARP:
		        return arp_req_delete(&r, dev);
		case SIOCSARP:
			return arp_req_set(&r, dev);
		case SIOCGARP:
			err = arp_req_get(&r, dev);
			if (!err)
				err = copy_to_user(arg, &r, sizeof(r));
			return err;
	}
	/*NOTREACHED*/
	return 0;
}

/*
 *	Write the contents of the ARP cache to a PROCfs file.
 */

#define HBUFFERLEN 30

int arp_get_info(char *buffer, char **start, off_t offset, int length, int dummy)
{
	int len=0;
	off_t pos=0;
	int size;
	struct arp_table *entry;
	char hbuffer[HBUFFERLEN];
	int i,j,k;
	const char hexbuf[] =  "0123456789ABCDEF";

	size = sprintf(buffer,"IP address       HW type     Flags       HW address            Mask     Device\n");

	pos+=size;
	len+=size;


	for(i=0; i<FULL_ARP_TABLE_SIZE; i++)
	{
		start_bh_atomic();

		for(entry=arp_tables[i]; entry!=NULL; entry=entry->u.next)
		{
/*
 *	Convert hardware address to XX:XX:XX:XX ... form.
 */
#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
			if (entry->hatype == ARPHRD_AX25 || entry->hatype == ARPHRD_NETROM)
			     strcpy(hbuffer,ax2asc((ax25_address *)entry->u.neigh.ha));
			else {
#else
			if(entry->hatype==ARPHRD_AX25)
			     strcpy(hbuffer,ax2asc((ax25_address *)entry->u.neigh.ha));
			else {
#endif
#endif
				
			if (entry->u.neigh.dev)
			{
				for(k=0,j=0;k<HBUFFERLEN-3 && j<entry->u.neigh.dev->addr_len;j++)
				{
					hbuffer[k++]=hexbuf[ (entry->u.neigh.ha[j]>>4)&15 ];
					hbuffer[k++]=hexbuf[  entry->u.neigh.ha[j]&15     ];
					hbuffer[k++]=':';
				}
				hbuffer[--k]=0;
			}
			else
				strcpy(hbuffer, "00:00:00:00:00:00");
	
#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
			}
#endif

			size = sprintf(buffer+len,
				"%-17s0x%-10x0x%-10x%s",
				in_ntoa(entry->ip),
				entry->hatype,
				entry->flags,
				hbuffer);
#if RT_CACHE_DEBUG < 2
			size += sprintf(buffer+len+size,
				 "     %-17s %s\n",
				 entry->mask==DEF_ARP_NETMASK ?
				 "*" : in_ntoa(entry->mask),
					entry->u.neigh.dev ? entry->u.neigh.dev->name : "*");
#else
			size += sprintf(buffer+len+size,
				 "     %-17s %s\t%d\t%d\t%1d\n",
				 entry->mask==DEF_ARP_NETMASK ?
				 "*" : in_ntoa(entry->mask),
				 entry->u.neigh.dev ? entry->u.neigh.dev->name : "*", 
				 atomic_read(&entry->u.neigh.refcnt),
				 entry->u.neigh.hh ? atomic_read(&entry->u.neigh.hh->hh_refcnt) : -1,
				 entry->u.neigh.hh ? entry->u.neigh.hh->hh_uptodate : 0);
#endif
	
			len += size;
			pos += size;
		  
			if (pos <= offset)
				len=0;
			if (pos >= offset+length)
			{
				end_bh_atomic();
				goto done;
			}
		}
		end_bh_atomic();	
	}
done:
  
	*start = buffer+len-(pos-offset);	/* Start of wanted data */
	len = pos-offset;			/* Start slop */
	if (len>length)
		len = length;			/* Ending slop */
	return len;
}



/*
 *	Called once on startup.
 */

static struct packet_type arp_packet_type =
{
	__constant_htons(ETH_P_ARP),
	NULL,		/* All devices */
	arp_rcv,
	NULL,
	NULL
};

static struct notifier_block arp_dev_notifier={
	arp_device_event,
	NULL,
	0
};

#ifdef CONFIG_PROC_FS
static struct proc_dir_entry proc_net_arp = {
	PROC_NET_ARP, 3, "arp",
	S_IFREG | S_IRUGO, 1, 0, 0,
	0, &proc_net_inode_operations,
	arp_get_info
};
#endif

__initfunc(void arp_init (void))
{
	dev_add_pack(&arp_packet_type);
	/* Start with the regular checks for expired arp entries. */
	add_timer(&arp_timer);
	/* Register for device down reports */
	register_netdevice_notifier(&arp_dev_notifier);

#ifdef CONFIG_PROC_FS
	proc_net_register(&proc_net_arp);
#endif

#ifdef CONFIG_ARPD
	netlink_attach(NETLINK_ARPD, arpd_callback);
#endif
}


#ifdef CONFIG_AX25_MODULE

/*
 *	ax25 -> ascii conversion
 */
char *ax2asc(ax25_address *a)
{
	static char buf[11];
	char c, *s;
	int n;

	for (n = 0, s = buf; n < 6; n++) {
		c = (a->ax25_call[n] >> 1) & 0x7F;

		if (c != ' ') *s++ = c;
	}
	
	*s++ = '-';

	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
		*s++ = '1';
		n -= 10;
	}
	
	*s++ = n + '0';
	*s++ = '\0';

	if (*buf == '\0' || *buf == '-')
	   return "*";

	return buf;

}

#endif