1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/*
* linux/net/sunrpc/stats.c
*
* procfs-based user access to generic RPC statistics. The stats files
* reside in /proc/net/rpc.
*
* The read routines assume that the buffer passed in is just big enough.
* If you implement an RPC service that has its own stats routine which
* appends the generic RPC stats, make sure you don't exceed the PAGE_SIZE
* limit.
*
* Copyright (C) 1995, 1996, 1997 Olaf Kirch <okir@monad.swb.de>
*/
#define __NO_VERSION__
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/proc_fs.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/svcsock.h>
#define RPCDBG_FACILITY RPCDBG_MISC
static struct proc_dir_entry *proc_net_rpc = NULL;
/*
* Get RPC client stats
*/
int
rpc_proc_read(char *buffer, char **start, off_t offset, int count,
int *eof, void *data)
{
struct rpc_stat *statp = (struct rpc_stat *) data;
struct rpc_program *prog = statp->program;
struct rpc_version *vers;
int len, i, j;
len = sprintf(buffer,
"net %d %d %d %d\n",
statp->netcnt,
statp->netudpcnt,
statp->nettcpcnt,
statp->nettcpconn);
len += sprintf(buffer + len,
"rpc %d %d %d\n",
statp->rpccnt,
statp->rpcretrans,
statp->rpcauthrefresh);
for (i = 0; i < prog->nrvers; i++) {
if (!(vers = prog->version[i]))
continue;
len += sprintf(buffer + len, "proc%d %d",
vers->number, vers->nrprocs);
for (j = 0; j < vers->nrprocs; j++)
len += sprintf(buffer + len, " %d",
vers->procs[j].p_count);
buffer[len++] = '\n';
}
if (offset >= len) {
*start = buffer;
*eof = 1;
return 0;
}
*start = buffer + offset;
if ((len -= offset) > count)
return count;
*eof = 1;
return len;
}
/*
* Get RPC server stats
*/
int
svc_proc_read(char *buffer, char **start, off_t offset, int count,
int *eof, void *data)
{
struct svc_stat *statp = (struct svc_stat *) data;
struct svc_program *prog = statp->program;
struct svc_procedure *proc;
struct svc_version *vers;
int len, i, j;
len = sprintf(buffer,
"net %d %d %d %d\n",
statp->netcnt,
statp->netudpcnt,
statp->nettcpcnt,
statp->nettcpconn);
len += sprintf(buffer + len,
"rpc %d %d %d %d %d\n",
statp->rpccnt,
statp->rpcbadfmt+statp->rpcbadauth+statp->rpcbadclnt,
statp->rpcbadfmt,
statp->rpcbadauth,
statp->rpcbadclnt);
for (i = 0; i < prog->pg_nvers; i++) {
if (!(vers = prog->pg_vers[i]) || !(proc = vers->vs_proc))
continue;
len += sprintf(buffer + len, "proc%d %d", i, vers->vs_nproc);
for (j = 0; j < vers->vs_nproc; j++, proc++)
len += sprintf(buffer + len, " %d", proc->pc_count);
buffer[len++] = '\n';
}
if (offset >= len) {
*start = buffer;
*eof = 1;
return 0;
}
*start = buffer + offset;
if ((len -= offset) > count)
return count;
*eof = 1;
return len;
}
/*
* Register/unregister RPC proc files
*/
static inline struct proc_dir_entry *
do_register(const char *name, void *data, int issvc)
{
struct proc_dir_entry *ent;
dprintk("RPC: registering /proc/net/rpc/%s\n", name);
ent = create_proc_entry(name, 0, proc_net_rpc);
ent->read_proc = issvc? svc_proc_read : rpc_proc_read;
ent->data = data;
return ent;
}
struct proc_dir_entry *
rpc_proc_register(struct rpc_stat *statp)
{
return do_register(statp->program->name, statp, 0);
}
void
rpc_proc_unregister(const char *name)
{
remove_proc_entry(name, proc_net_rpc);
}
struct proc_dir_entry *
svc_proc_register(struct svc_stat *statp)
{
return do_register(statp->program->pg_name, statp, 1);
}
void
svc_proc_unregister(const char *name)
{
remove_proc_entry(name, proc_net_rpc);
}
void
rpc_proc_init(void)
{
dprintk("RPC: registering /proc/net/rpc\n");
if (!proc_net_rpc) {
struct proc_dir_entry *ent;
ent = create_proc_entry("net/rpc", S_IFDIR, 0);
if (ent) {
#ifdef MODULE
ent->fill_inode = rpc_modcount;
#endif
proc_net_rpc = ent;
}
}
}
void
rpc_proc_exit(void)
{
dprintk("RPC: unregistering /proc/net/rpc\n");
if (proc_net_rpc) {
proc_net_rpc = NULL;
remove_proc_entry("net/rpc", 0);
}
}
#ifdef MODULE
/*
* This is called as the proc_dir_entry fill_inode function
* when an inode is going into or out of service (fill == 1
* or 0 respectively).
*
* We use it here to keep the module from being unloaded
* while /proc inodes are in use.
*/
void rpc_modcount(struct inode *inode, int fill)
{
if (fill)
MOD_INC_USE_COUNT;
else
MOD_DEC_USE_COUNT;
}
int
init_module(void)
{
#ifdef RPC_DEBUG
rpc_register_sysctl();
#endif
rpc_proc_init();
return 0;
}
void
cleanup_module(void)
{
#ifdef RPC_DEBUG
rpc_unregister_sysctl();
#endif
rpc_proc_exit();
}
#endif
|